不同锌肥对旱作马铃薯植株锌的吸收、积累与分配的影响

孙小龙1,2,王延明2,3,张春红2,3,张俊莲1,2,邱慧珍2,3,王 蒂1,2,李德明4
(1. 甘肃农业大学园艺学院, 甘肃 兰州 730070; 2. 甘肃省作物遗传改良与种质创新重点实验室/甘肃省干旱生境作物学重点实验室, 甘肃 兰州 730070; 3. 甘肃农业大学资源与环境学院, 甘肃 兰州 730070; 4. 定西市农业科学研究所, 甘肃 定西 743000)

摘 要: 通过大田试验, 研究了施用不同锌肥(无机硫酸锌和有机螯合态糖醇锌)对马铃薯“新大坪”植株锌的吸收、积累和分配以及对块茎产量的影响。结果表明: 出苗后35d即可观察到马铃薯植株各器官锌浓度的明显差异; 在生育期进行的3次喷施显著提高了各器官的锌浓度和积累量, 以叶片的增幅最大; 硫酸锌处理(T2)和糖醇锌处理(T3)叶片的锌浓度分别于出苗后85d和75d达到峰值; 出苗后85d时, T2和T3处理叶片的锌浓度分别比对照(T1)提高了47.88mg·kg⁻¹和72.24mg·kg⁻¹, T3比T2提高了24.36mg·kg⁻¹。至块茎增长末期, T2和T3处理叶片的锌积累量分别比T1增加了1.5倍和4倍, 块茎锌素积累量比T1增加37.5%和49.4%。施用锌肥后通过提高马铃薯叶片的锌浓度, 促进了叶片的光合作用, 进而促进了其它器官的生长发育, 最终提高了块茎产量和锌产量, T2和T3处理的块茎产量分别比T1增加了10.6%和22.5%, 锌产量分别增加了26.9%和46.0%。“拌种 + 喷施”的锌肥施用技术法提高了锌向根和茎叶的分配率, 降低了向块茎的分配率; 施用锌肥提高了地上器官中向地下器官的转运系数。马铃薯种薯和叶片对小分子有机螯合态锌肥糖醇锌的吸收明显优于无机锌肥硫酸锌。

关键词: 锌肥; 马铃薯; 锌浓度; 锌积累量; 分配

中图分类号: S143.7+2; S532 文献标志码: A

Effects of different kinds of zinc fertilizers on zinc absorption, accumulation and distribution of potato under rainfed conditions

SUN Xiao-long1,2, WANG Yan-ming2,3, ZHANG Chun-hong2,3, ZHANG Jun-lian1,2, QIU Hui-zhen2,3, WANG Di1,2, LI De-ming4
(1. College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu 730070, China; 2. Gansu Province Crop Genetic Improvement and Germplasm Innovation Laboratory/Key Laboratory of School of Gansu Province Arid Habitat Crop, Lanzhou, Gansu 730070, China; 3. College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, Gansu 730070, China; 4. Dingxi Agricultural Science Research Institute, Dingxi, Gansu 743000, China)

Abstract: A field experiment was conducted to examine the effects of different kinds of zinc fertilizers (inorganic zinc sulfate and organic chelated zinc sugar alcohols) on the absorption, accumulation and distribution of Zn, and the tuber yield of “Xin Da Ping” potato plants. The results showed that 35 days after the emergence, obvious variations in zinc concentrations could be observed in all organs of potato plants. Three sprays during the growth period could significantly increase zinc concentrations and accumulations in various organs, displaying the highest growth rate in leaves. Zinc sul-
fat treatment (T2) and sugar alcohol treatment (T3) of zinc concentration in leaves reached the maximums 85 days and 75 days after emergence, respectively. 85 days after emergence, zinc concentrations in leaves with T2 and T3 treatments were increased by 47.88 mg·kg⁻¹ and 72.24 mg·kg⁻¹, respectively, and that with T3 was 24.36 kg·mg⁻¹ higher than that with T2. Till the end of tuber growth, zinc accumulations in leaves by T2 and T3 treatments were increased 1.5 times and 4 times as much as that by T1, and zinc accumulations in the tubers were increased by 37.5% and 49.4% more than that by T1. Application of zinc fertilizer by increasing zinc concentrations in leaves of potato promoted photosynthesis, and consequently helped the growth and development of other organs, ultimately improving the yield of tubers and yield of zinc. Tuber yields by T2 and T3 were increased by 10.6% and 22.5% more than that by T1.

Application of zinc fertilizer increased the transfer coefficient from the ground organs to the underground organs. Potato seed and leaf showed better absorption of small molecules of organic chelated zinc fertilizer sugar alcohol zinc than inorganic zinc sulfate zinc.

Keywords: zinc fertilizer; potato; zinc concentration; zinc accumulation; distribution

锌是作物和人体必需的微量营养元素,作物锌缺乏不仅影响自身的生长发育,并通过食物链影响人体对锌的摄入量[1]。因此,提高植物类产品,尤其是粮食作物可食部分的锌含量对缓解人体缺锌意义重大[2-3]。有研究表明,小麦、水稻及玉米上施用锌肥可有效提高籽粒中锌含量,并随施用锌肥量的增加而增加[4]。马铃薯营养价值很高,块茎含有的18种氨基酸包括人体不能合成的各种必需氨基酸,常被用作谷物产品大米、面粉等的强化剂[5]。它是我国城乡居民喜爱的一种粮、菜兼用作物,消费量不断上升[6]。施用锌肥能提高块茎含锌量尚未见报道,可否通过施肥强化马铃薯块茎的锌含量,促进人体健康是近年来研究者关注的热门课题[7]。

1 材料与方法

1.1 试验区概况

大田试验共设3个处理:T1:对照,不施锌;T2: 硫酸锌(主要成分ZnSO₄·7H₂O,其中锌的质量百分含量为22.7%);T3:糖醇锌(主要成分:糖醇、纯锌,其中糖醇的质量浓度为10g·L⁻¹,纯锌的质量浓度为8.6 g·L⁻¹)。小区面积约76m²(11.7m×6.5m),每处理重复4次,随机区组排列,开沟10cm施肥后起垄(垄面宽80cm、垄高10cm、垄距50cm),覆膜。原种整薯播种,播深15cm。每垄种植2行,行
距 50 cm，株距 25 cm，密度 4 125 株·667m⁻²。所有处理底肥一致，氮用量为 150 kg·hm⁻²，N: P₂O₅: K₂O=1: 0.5: 0.8。氮肥用尿素(N,46%)，磷肥用过磷酸钙(P₂O₅,16%)，钾肥用硫酸钾(K₂O,52%)，所有化肥于播前一次基施。

锌肥施肥方法：拌种+生育期叶面喷施（3 次）。拌种方法和用量：硫酸锌：1 g ZnSO₄·7H₂O/kg 种薯，糖醇锌：3 mL 糖醇锌/kg 种薯。播种前将锌肥用少量水溶解后喷洒在种薯表面拌种，晾干后播种，对照喷清水。叶面喷施方法和用量：全生育期喷施用锌肥 3 次，分别在出苗后 36 d, 56 d, 65 d, 即开花前（7 月 5 日）、初花期（7 月 25 日）和盛花期（8 月 3 日）。两种锌肥等锌浓度（0.02% Zn）喷施，用量 52 L·667m⁻²·次⁻¹，对照喷施等量清水。

试验品种为马铃薯“新大坪”，由甘肃省定西市农业科学研究所提供。供试肥料：糖醇锌为美国布兰特股份有限公司生产的糖醇螯合锌肥，同硫酸锌，均由北京新禾丰农化资料有限公司提供。

1.3 测定项目和方法

生育期取样 6 次，分别于苗期（出苗后 20 d）、块茎形成期（35 d）、块茎膨大期（50 d）、块茎膨大后期（65 d）、淀粉积累期（85 d)、成熟期（105 d）进行，每 次 5 株/小区，除去黏附灰尘后用蒸馏水清洗，按地部、茎、叶、块茎分开，在 105℃下杀青 30 min, 在 80℃下烘至恒重，冷却后称重备用。

植株锌含量测定采用 HON₃-H₂O₂ 微波消解方法[19]，土壤有效锌元素采用 DTPA-TEA 浸提，原子吸收分光光度计测定[20]；土壤理化性状采用常规测定方法[20]。

1.4 数据处理方法

采用 DPS7.05 软件 Duncan 新复极差法（P < 0.05）对试验数据进行统计分析，Excel 对试验数据进行处理作图。

2 结果与分析

2.1 不同锌肥对马铃薯产量和商品性的影响

表 1 结果表明，施用锌肥显著提高了马铃薯块茎产量，与对照（T1）相比，硫酸锌（T2）和糖醇锌处理（T3）分别增产了 10.6% 和 22.5%，T3 的增产效果明显优于 T2，这主要是因为小分子有机态锌易与叶片角质层羧基和羟基长碳链脂肪酸聚合物的分子间隙及亲水基团发生渗透作用进入叶内，从而更易被叶片吸收[21]。

表 1 不同处理对马铃薯产量和商品性的影响

<table>
<thead>
<tr>
<th>处理</th>
<th>单株结薯数 (Tuber number) / (No·plant⁻¹)</th>
<th>单薯重量 (Per tuber weight) / g</th>
<th>单株产量 (Yield per plant) / g</th>
<th>大薯率 (Large tuber rate) / %</th>
<th>中薯率 (Medium tuber rate) / %</th>
<th>小薯率 (Small tuber rate) / %</th>
<th>商品率 (Commodity rate) / %</th>
<th>产量 (Yield) / (kg·hm⁻²)</th>
<th>锌产量 (Zinc yield) / (g·hm⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>5.9a</td>
<td>167.49 ± 2.34b</td>
<td>568.75 ± 20.8b</td>
<td>23.13 ± 1.47b</td>
<td>46.88 ± 1.22a</td>
<td>27.16 ± 1.51b</td>
<td>46.88 ± 1.22a</td>
<td>19527 ± 19524c</td>
<td>259.32 ± 0.76c</td>
</tr>
<tr>
<td>T2</td>
<td>6.3a</td>
<td>186.79 ± 20.53a</td>
<td>680.26 ± 44.39a</td>
<td>36.95 ± 3.80a</td>
<td>36.85 ± 4.18b</td>
<td>23.59 ± 2.58b</td>
<td>36.85 ± 4.18b</td>
<td>23926 ± 1662a</td>
<td>313.47 ± 2.33b</td>
</tr>
<tr>
<td>T3</td>
<td>6.5a</td>
<td>187.57 ± 7.08a</td>
<td>713.05 ± 85.14a</td>
<td>33.77 ± 3.80a</td>
<td>33.77 ± 5.02b</td>
<td>18.32 ± 1.60b</td>
<td>33.77 ± 5.02b</td>
<td>23926 ± 1662a</td>
<td>365.83 ± 0.70a</td>
</tr>
</tbody>
</table>

注：同列小写字母表示处理间差异达 5% 显著水平，下同。

2.2 不同锌肥对马铃薯各器官锌浓度的影响

马铃薯各器官中锌浓度的测定结果发现，用作种肥的锌肥在马铃薯出苗后 35 d 各器官的锌浓度即表现出差异（表 2）。由表 2 可以看出，出苗后 35 d 时，不同处理中马铃薯叶、茎、根系的锌浓度即表现出差异，说明经过锌肥处理的种薯可以吸收肥料中的锌。在生育期中进行的三次喷施更是极显著提高了马铃薯各器官的锌浓度。
表 2 不同处理对马铃薯各器官中锌浓度的影响/(mg·kg\(^{-1}\))

<table>
<thead>
<tr>
<th>器官</th>
<th>处理</th>
<th>出苗后天数 Days after seedling/d</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>叶</td>
<td>T1</td>
<td>28.73 ± 5.89a</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>31.15 ± 1.37a</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>20.61 ± 0.31a</td>
</tr>
<tr>
<td>茎</td>
<td>T1</td>
<td>64.15 ± 6.35b</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>75.75 ± 6.61a</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>66.83 ± 3.37a</td>
</tr>
<tr>
<td>根</td>
<td>T1</td>
<td>55.45 ± 2.49b</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>68.62 ± 3.09a</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>57.64 ± 3.41b</td>
</tr>
<tr>
<td>块茎</td>
<td>T1</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>T2</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>—</td>
</tr>
</tbody>
</table>

图 1 同一处理中马铃薯叶锌浓度的变化

Fig. 1 Zinc concentrations with the same treatment in potato leaves.

结果也显示，T2 和 T3 处理中除了叶片之外的其它器官中的锌浓度也显著高于对照 T1，T3 的效果大于 T2。说明糖醇锌不仅比硫酸锌吸收快，而且在马铃薯植株体内的运输也快。

2.3 不同锌肥对马铃薯各器官锌素积累量的影响

研究结果表明，施用锌肥显著增加了不同器官的锌素积累量。表 3 结果显示，施锌处理显著提高了地上部（叶/茎/地下部（根/块茎）的锌转运系数，以 T3 处理糖醇锌的提高幅度最为显著。当锌肥以“拌种 + 喷施”的施肥技术用于马铃薯生产时，可显著促进锌在叶片和茎中的积累，并促进各器官中锌向块茎的

2.4 不同锌肥对马铃薯各器官锌素分配的影响

研究结果表明，T2 和 T3 处理中锌在根系和叶中的分配比例始终高于 T1，所以在块茎中分配比例低于 T1(图 3)。但是，T2 和 T3 处理中马铃薯地上部 - 叶和茎中的锌向地下部 - 根和块茎中的锌转运系数均高于 T1(表 3)。
转运速率。成熟期后，由于叶片的枯萎掉落情况导致叶/块茎转运系数有所下降，同时期比较仍表现为 T3 > T2 > T1。总体表现尤以 T3 处理糖醇锌对锌从地上部/地下部的转运效果更为显著。

3 讨论

本研究通过喷施有机和无机态锌肥为提高马铃薯块茎锌含量和产量提供一定的技术支撑，有其必要的研究意义。人体缺锌是影响人类健康的全球性问题，尤其是发展中国家，从农产品中获取的锌量不能满足人们维持健康状态对锌的需求。所以试验设法找到使农作物中含锌量提升的措施，本试验表明喷施小分子有机螯合锌 - 糖醇锌有助于锌向马铃薯块茎中的积累，这对于实际应用到生产中有重要的意义。有研究表明，以收获营养器官为收获对象的作物，由于施用锌肥后光合作用功能增强，光合
表3 不同处理在不同生育期内马铃薯各器官中锌转运系数变化

<table>
<thead>
<tr>
<th>锌转运系数</th>
<th>处理</th>
<th>出苗后天数</th>
<th>Days after seeding/d</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn translocation coefficient</td>
<td>Treatment</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>叶/块茎</td>
<td>Leaf/tuber</td>
<td>T1</td>
<td>0.52 ± 0.10a</td>
</tr>
<tr>
<td>叶/根</td>
<td>Leaf/roots</td>
<td>T2</td>
<td>0.45 ± 0.07b</td>
</tr>
<tr>
<td>茎/块茎</td>
<td>Stem/tuber</td>
<td>T3</td>
<td>0.36 ± 0.05b</td>
</tr>
<tr>
<td>茎/根</td>
<td>Stem/roots</td>
<td>T1</td>
<td>1.16 ± 0.13a</td>
</tr>
<tr>
<td>叶/块茎</td>
<td>Leaf/tuber</td>
<td>T2</td>
<td>0.70 ± 0.15b</td>
</tr>
<tr>
<td>叶/根</td>
<td>Leaf/roots</td>
<td>T3</td>
<td>0.36 ± 0.05b</td>
</tr>
<tr>
<td>茎/块茎</td>
<td>Stem/tuber</td>
<td>T1</td>
<td>3.39 ± 1.36a</td>
</tr>
<tr>
<td>茎/根</td>
<td>Stem/roots</td>
<td>T2</td>
<td>3.07 ± 0.47b</td>
</tr>
<tr>
<td>茎/块茎</td>
<td>Stem/tuber</td>
<td>T3</td>
<td>3.41 ± 0.65a</td>
</tr>
</tbody>
</table>

面积增大，使植株的鲜重和干重增加。贾景丽[24]研究结果表明，锌素浸种可增加马铃薯大、中薯率，大薯率的提高，增加马铃薯商品性，能够直接增加马铃薯的经济效益。本试验中施锌提高了马铃薯块茎产量，与对照相比，硫酸锌和糖醇锌处理分别增产了10.6%和22.5%，块茎锌素积累量和锌产量分别增加37.5%、49.4%和26.9%、46.0%。通过施锌宋春风[25]对芋微量营养吸收的研究结果也表明，锌的吸收动态与植株干物质积累规律基本一致。

试验在马铃薯上以美国生产的小分子有机螯合锌-糖醇锌，与国产硫酸锌在马铃薯上进行大田试验，研究了在早作栽培条件下，马铃薯对锌的吸收与分配，白艳[26]研究发现，马铃薯“紫花白”叶和块茎对Zn_{26} 吸收量呈呈向上的S曲线变化，茎呈向下的S曲线。这与本试验的研究不同，在块茎增长末期，硫酸锌和糖醇锌处理叶片锌素积累量分别为1.16 mg·株^{-1}和2.35 mg·株^{-1}，比T1分别增加了1.5倍和4倍。叶呈单峰抛物线，可能是因为本试验锌肥通过叶面喷施，而其他则施基肥的差异以及品种不同所致。试验表明不同锌肥对马铃薯根系的吸收具有促进作用，显著提高了各器官的锌浓度和积累量，以小分子有机螯合锌-糖醇锌效果更为显著。习敏等[27]研究认为，块茎增长期是马铃薯吸收锌最多的时间，也是锌素需求的高峰期，本实验结果表明，马铃薯新大坪在这一时期吸收积累的锌占全生育期吸收总量的53.7%，两种锌肥均显著提高了马铃薯植株中对锌的最大吸收量和最大吸收速率，尤其是糖醇锌，其最大吸收速率比对照增加了近2倍。马铃薯在块茎形成期和块茎增长期即到未来之前是施用锌肥的关键时期，这说明本试验采用的不同锌肥施用方式，即在块茎形成期一块茎增长期连续喷施三次锌肥，对促进锌素的吸收和积累十分重要，并且以小分子有机螯合锌-糖醇锌效果更为显著。

4 结 论

本试验用锌肥进行种薯处理结合三次叶面喷施，可显著提高马铃薯叶片的锌浓度，促进叶片的光合作用，进而促进了其它器官的生长发育，最终提高了块茎产量和锌产量。硫酸锌处理(T2)和糖醇锌处理(T3)的块茎产量分别比T1增加了10.6%和22.5%，锌产量分别增加了26.9%和46.0%。在生育期进行的3次喷施显著提高了各器官的锌浓度和积累量，T2和T3叶片的锌浓度分别于出苗后85d和75d达到峰值，至块茎增长末期，块茎锌素积累量比T1增加37.5%和49.4%。

马铃薯种薯叶和块茎对小分子有机螯合态锌肥糖醇锌的吸收明显优于无机锌肥硫酸锌。拌种+喷施的锌肥施用技术提高了锌向根和茎叶的分配率，降低了向块茎的分配率；使锌肥提高了地上器官中向地下器官的转运系数。

参考文献:

[1] 姜文, 赵明, 樊堂群. 粮食作物锌的吸收运转分配和改善子
参考文献：

