文章编号:1000-7601(2018)05-0207-08

doi:10.7606/j.issn.1000-7601.2018.05.30

新疆阜康荒地土壤有机质高光谱 特征及其反演模型研究

乔娟峰¹,熊黑钢²,王小平¹,郑曼迪¹,刘靖朝¹,李荣荣¹ (1.新疆大学资源与环境科学学院,绿洲生态教育部重点实验室,新疆 乌鲁木齐 830046;

2.北京联合大学应用文理学院,北京 100083)

摘 要:针对干旱区荒地土壤贫瘠且有机质含量少,难以快速、准确测定的问题,以阜康中部荒地土壤为研究对 象,对 64 个样点野外光谱进行测定和室内土壤样品农化分析,在原始反射率(R)基础上,利用 ENVI5.1 软件提取光 谱反射率一阶微分(R')、倒数的对数(lg(1/A))、倒数的对数一阶微分(lg(1/A)')、去包络线(CR)等4种光谱反射 率,分析了5种光谱反射率的变换形式与土壤有机质含量的相关性,基于全波段(450~2 350 nm)和显著性波段(相 关系数通过 P=0.01 水平检验),利用偏最小二乘法回归(PLSR)建立土壤有机质含量的高光谱预测模型。结果表 明:(1)对不同有机质含量的土壤光谱去包络线后,光谱曲线吸收特征差异更加显著,且土壤有机质含量越多,土壤 光谱反射率越低。(2)土壤反射率经过数学变换后提高了与有机质含量的相关系数。(3)在全波段的 PLSR 中,CR、 R'和 lg(1/R)'模型的 RPD 均大于 2.0,表明预测能力极好。其中以 CR 的预测精度最为突出,其模型 R²和 RMSE 分 别为 0.79、4.12, RPD 为 2.18。在显著性波段的 PLSR 中,虽然 R'和 CR 的模型 RPD 均大于 2.0,可以准确预测有机质 含量,但 CR 的 R², RPD 更高;基于全波段 PLSR 模型精度均略优于显著性波段,但其使用数据量大,增加了计算量。 同时,其 CR 模型的 RPD 仅比显著性波段模型的高 0.03。因此,选择显著性波段 CR 模型作为估测该荒地土壤有机 质含量的模型更为简洁、科学、可行。

Wasteland soil organic matter hyperspectral characteristics and inversion model research in Fukang, Xinjiang

QIAO Juan-feng¹, XIONG Hei-gang², WANG Xiao-ping¹, ZHENG Man-di¹, LIU Jing-chao¹, LI Rong-rong¹ (1. College of Resources & Environment Science, Xinjiang University, Key Laboratory of Oasis Ecology(Xinjiang University)Ministry of Education, Urumqi, Xinjiang 830046, China, 2. College of Art & Science, Beijing Union University, Beijing 100083, China)

Abstract: It is difficult to determine concentration of soil nutrition and organic matter accurately and quickly for poverty of soil with less organic matter in waste land, arid region. Concentration of organic matter and field spectra of 64 soil samples from barren land in central Fukang, were analyzed. Based on the original reflectance (R), the software ENVI5.1 was used to extract the first derivative reflectance (R'), logarithmic reciprocal $(\lg(1/A))$, the logarithm of reciprocal derivative $(\lg(1/A)')$, to envelope (CR) and other 4 kinds of spectral reflectance. The correlation between the 5 spectral reflectance transformation form and concentration of soil organic matter was analyzed. Based on the full band $(450 \sim 2 350 \text{ nm})$ and significant band (correlation coefficient by P = 0.01 level test), prediction models of soil organic matter concentration were regressed by partial least squares regression (PLSR) hyperspectral. The results showed that: (1) The spectral curve absorption characteristics of soil with different organic matter concentration were more significant. Concentration of soil organic matter, correlated inversely to the spectral reflectance of soil. (2) The correlation coefficient between soil reflectance and the concentration of organic matter.

基金项目:国家自然科学基金"干旱区人类活动胁迫下绿洲水盐时空变化规律研究"(41671198)

作者简介:乔娟峰(1991-),女,陕西宝鸡人,硕士,研究方向为干旱区土壤高光谱遥感研究。E-mail:945614553@qq.com

通信作者:熊黑钢(1956-),男,湖南湘乡人,教授,博士,博士生导师,现主要从事资源环境研究。E-mail: heigang@buu.edu.cn

收稿日期:2017-09-28 修回日期:2017-12-04

ganic matter was enhanced by mathematical transformation. (3) In the whole band of PLSR, the *RPD* of *CR*, *R'* and lg(1/R) model was greater than 2, which indicated that the prediction ability was excellent. Among them, the prediction accuracy of *CR* was the most prominent, and the model R^2 and *RMSE* were 0.79 and 4.12, respectively, and *RPD* was 2.18. In a significant band of PLSR, while *RPD R'* and *CR* model were greater than 2, could accurately predict the concentation of organic matter. However, R^2 and *RPD* of the *CR* were higher precision, full spectrum PLSR model was slightly better than significant band based and increased the amount of calculation for its use of large amount of data. At the same time, the *RPD* of the *CR* model was only 0.03 higher than which of the significant band model. Therefore, it is more concise, scientific and feasible to choose the significant band *CR* model as a model to estimate the content of organic matter in the uncultivated land.

Keywords: wasteland; soil organic matter; hyperspectral; significant band; partial least squares regression method(PLSR)

土壤有机质的含量是影响土壤肥力的一个重要指标。常规土壤有机质含量的测定一般采用化 学分析法,成本较高且耗费时间较长^[1]。而高光谱 遥感具有波段多,分辨率高等特点,可以快速,无损 测定地物反射率。因此,利用实测光谱反射率对土 壤有机质含量进行定量反演,能为地表土壤有机质 含量的快速测定提供技术支持。基于荒地地表土 壤自身的实测光谱特征,通过土壤有机质高光谱分 析,了解土壤的现状,为该荒地有机质含量大面积 精准反演提供依据。

国内外学者对土壤光谱和土壤有机质含量之 间的关系做了深入研究后发现,土壤有机质在可见 光-近红外区域表现出独特的光谱特性^[2]。Al-Abbas 等发现土壤光谱反射率与有机质含量呈显著 负相关^[3]。Marion 认为有机质含量是解释 520~ 1 750 nm 谱段光谱反射差异的最重要变量,尤其与 可见光波段的相关性最高^[4]。Hummel 等研究土壤 有机质和近红外光谱曲线之间的关系,并采用光谱 反射率倒数的对数建立有机质含量预测模型^[5]。 在利用光谱反射率数据进行土壤有机质含量反演 的模型方面,模型的建立依赖于研究区域和特有的 数据,大多是运用最小二乘回归的方法^[6-10]。南锋 等针对黄土高原煤矿区复垦农田土壤,对光谱反射 率进行 lg(1/A)、R'变换,建立全波段和显著性波段 PLSR 模型,发现显著性波段对数的倒数建立的模 型精度优于全波段[11]。朱登胜等研究了土壤的光 谱特性,并采用 PLSR 方法建立了一阶微分光谱的 光谱吸光度与土壤有机质含量之间的定量分析模 型,预测结果的相关系数为0.82,为实现土壤特性快 速测量光谱数据提供了参考[12]。李颉等对土壤全 氮、全钾、有机质养分含量和 pH 值用 PLSR 模型进 行预测,发现预测结果与实测数据具有较好的一 致性[13]。

由于有很多因素影响土壤的光谱反射率,例 如:粒度、盐分、有机质、表面结构、各种元素(K、Na、 Ca、Mg、SiO²⁻4、HCO⁻3、CO²⁻等等),因此,有机质的光 谱预测难度较大。特别是在有机质含量比较少的 情况下。寻找科学的、合理的、精度较高的有机质 含量预测模型成为当前研究的热点。本文以阜康 中部的有机质含量低的荒地土壤为研究对象,通过 对野外土壤实测地表反射率及其数学变换与有机 质含量的相关性分析,利用偏最小二乘法建立基于 全波段(450~2 350 nm)和显著性波段土壤有机质 高光谱的预测模型,以探讨有机质含量低的土壤与 光谱反射率的响应关系,找出土壤较为贫瘠地区的 有机质含量最优反演方法提高其建模精度,以期为 区域尺度干旱区有机质含量低的荒地土壤肥力监 测提供参考。

1 数据来源与研究方法

1.1 研究区概况

研究区位于阜康中部的荒地,土壤盐碱化严 重,土壤类型以盐碱土为主,具有良好的区域土类 代表性。其地表由红柳、梭梭、杂草混合镶嵌分布。 地理坐标(87°46′~88°44′E,43°45′~45°29′N)。此 地夏季炎热,冬季寒冷,春秋气温升降剧烈,年均气 温 6.6℃,7 月平均气温 26.6℃,1 月平均气温 -17℃,无霜期 174 天,年降水量 164 mm,年蒸发潜 力 2 000 mm 左右,冬季积雪 3~29 cm,是典型的大 陆性干旱气候^[14]。

1.2 土样的采集与处理

研究区土壤为原状表层土,质地为壤土。采样 以遥感图像为参考图,手持 GPS 科学辅助野外调查 选点。样点采用东南-西北方向布点,每个点大约 相隔 300 m。采样取 0~10 cm 深度土壤,按照梅花 桩钻取 5 个土样混合为一个样品,总计为 64 个采样 点(图1)。对所采的每个土壤样本编号入袋,带回 实验室,经自然风干和剔除残渣、石块等杂质后,研 磨,过2mm孔筛。然后送至中国科学院新疆生态 与地理研究所理化测试中心,由专业人员采用高温 外热重铬酸钾容量法进行土壤有机质含量测定。

Fig.1 Location of the study area and distribution of sampling points

1.3 土壤高光谱测定

野外光谱测量采用美国 ASD 公司生产的便携 式 FieldSpec[®] 3 Hi-Res 光谱仪,有效光谱范围:350 ~2 500 nm。为了避免天气对光谱造成不利的影 响,测量时间选择在 13:00~15:00(当地时间)、 晴朗少云、无风的天气进行。每次采集光谱前对光 谱仪进行白板校正以去除暗电流影响,且探头距采 样点的垂直上方 15 cm。为了避免地表裂缝及周围 植被等因素的干扰,每个样点尽量远离可能干扰土 壤光谱的物体。同时在样点附近(1m 范围内)选取 土壤背景相近的 5 个位置采集光谱,每个位置重复 测量 10 条光谱曲线,共 50 条曲线,以减小环境对光 谱的影响。

1.4 光谱数据预处理与光谱指标提取

首先,采用 ASD View Spec Pro 对光谱预处理, 去除光谱数据中有异常的光谱曲线。其次,对每个 样点反射率进行平均作为该样点的实测光谱数据。 最后,运用 OriginPro 9.1 对光谱反射率进行 Savitaky-Golay(2次多项式,5个点)平滑去噪处理, 同时删除噪声较大的波段 350~499 nm 和 2 351~ 2 500 nm。在预处理后的土壤原始光谱反射率(R) 的基础上,利用 ENVI4.8 软件进行光谱反射率(R) 的基础上,利用 ENVI4.8 软件进行光谱反射率一阶 微分(R')、倒数的对数(lg(1/A))、倒数的对数一阶 微分(lg(1/A)')、去包络线(CR)等4种光谱反射率 变换。光谱反射率作一阶微分变换可以对重叠混 合光谱进行分解以便识别,扩大样品之间的光谱特 征差异;光谱反射率经对数变换后,可以增强可见 光区域的光谱差异性,而且可以减少因光照条件变 化引起的乘性因素影响^[15]。去包络线处理可突出 光谱信息的吸收的特征。

1.5 建模与检验方法

偏最小二乘法是一种多元统计分析方法,可以 更好地解决自变量之间多重自相关性的问题,从而 允许在样本个数少于变量个数的条件下进行回归 建模,能有效地提取对系统解释能力最强的综合变 量(称为潜变量),排除无解释作用的信息,使之对 因变量有最强的解释能力^[16]。有机质含量建模集 和预测集的划分选用 K-S(Kennard-Stone)算 法^[17],在 Matlab R2013a 软件中编程计算出各个样 本光谱空间的欧氏距离,选用 43 个样本用于建模, 21 个样本用于验证。

土壤有机质含量反演模型的预测精度采用预测值和实测值的决定系数 R²,均方根误差 RMSE 和相对分析误差 RPD(检验样本标准 SD 与预测均方根误差 RMSE 的比值)来衡量。R²越大, RMSE 越小,说明模型的精度越高^[18]。Viscarra 等^[19]对模型 RPD 做了如下分类, RPD<1.0,预测能力极差;1.0< RPD<1.4,预测能力较差;1.4<RPD<1.8,预测能力 一般;1.8<RPD<2.0预测能力较好;2.0<RPD<2.5 预测能力极好。各公式如下:

$$R^{2} = \frac{\sum_{i=1}^{n} (x_{p} - \bar{x})^{2}}{\sum_{i=1}^{n} (x_{o} - \bar{x})^{2}}$$
(1)

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_o - x_p)^2}$$
(2)

$$SD = \sqrt{\frac{\sum_{i=1}^{n} (x_o - x_p)}{n}}$$
(3)

$$RPD = \frac{SD}{RMSE} \tag{4}$$

式中, x 为土壤有机质平均值; x , 为土壤有机质实测值; x , 为土壤有机质实测值; x , 为土壤有机质预测值。

2 结果与分析

2.1 土壤有机质的统计特征

根据全国第二次土壤普查及有关标准,土壤有 机质含量为6个级别^[20](表1)。研究区土壤有机 质含量在0.59~23.55g·kg⁻¹之间,属于极缺乏-缺 乏水平。从其均值来看,有机质量为9.61g·kg⁻¹, 总体上偏低,属于很缺乏水平,说明该区土壤贫瘠 且养分含量少(表2)。其原因主要与研究区气候干 旱少雨,荒地植物生产能力低,土壤中微生物活性 低、土壤动植物残体归还土壤少,使有机质在土壤 中的积累缓慢有关。

根据变异系数(CV)的大小可粗略估计变量的 变异程度:弱变异性,CV<10%;中等变异性,CV为

10%~100%;强变异性,*CV*>100%。64个样品土壤 有机质的*CV*为53.21,在空间表现为中等变异,表 明样本离散程度较高,用于构建模型具有代表性。 偏度(α)一般用于衡量样本分布的对称程度, α 为0 时为正态分布; α 大于0时为正偏斜; α 小于0时为 负偏斜。该采样区 α >0,说明其数据属于正态分布 的正偏斜。峰度(β)一般用于衡量样本分布的集中 程度,当 β >0时,代表正态分布更集中在平均数周 围,分布呈现尖峰态;当 β =0时,呈现为正态分布; 当 β <0时,表示数据更分散,呈现低峰态。该荒地 β <0,说明数据相对于正态分布更平坦。

表1 全国土壤养分含量分级标准

Table 1 National standards for soil nutrient content

有机质/(g・kg ⁻¹) Organic matter	级别 Level					
>40	很丰富 Very rich					
30~40	丰富 Rich					
20~30	中等 Secondary					
10~20	缺乏 Lack					
6~10	很缺乏 Very scarce					
<6	极缺乏 Extreme lack					

	Table 2 Descriptive statistical analysis of soil organic matter in the study area								
样本类型	样本数	最小值	最大值	均值	标准差	变异系数/%	偏度	峰度	
Type of samples	Observations	Min.	Max.	Mean	Standard deviation	Coefficient of variation	Skewness	Kurtosis	
总体样本 Whole set	64	0.59	23.55	9.61	5.11	53.21	0.47	-0.24	
建模样本 Calibration set	43	0.59	23.55	9.53	5.21	54.67	0.36	0.71	
验证样本 Validation set	21	2.19	20.91	9.77	5.03	51.49	0.46	-0.39	

表 2 研究区土壤有机质描述性统计分析

2.2 不同有机质含量的土壤光谱特征分析

对应全国第二次土壤普查及有关标准,将各样 点的土壤有机质含量分为3个等级(由于中等分级 区仅有2个土壤样本,样本数较少,因而没有在此处 讨论)。做出不同等级的土壤光谱反射率曲线(图 2)。其具有以下特征:(1)3个等级的有机质含量 的土壤光谱曲线大致保持平行状态,且波形基本相 似。近红外波段光谱反射率大于可见光波段,其曲 线之间差异也略大于可见光。(2)土壤有机质含量 与其光谱反射率呈负相关关系,即有机质含量越 低,土壤反射率越高。说明土壤有机质含量可以从 土壤反射率中得到一定程度的反映。(3)在400~ 760 nm 波段范围内,随着波长的增加反射率呈现明 显上升趋势。土壤中有机质主要来源于腐殖质,由 于土壤中胡敏酸和富里酸的作用,曲线在可见光波 段范围内总体呈上升趋势^[21]。在760~2350 nm 波 段范围内曲线有凹凸不平的峰谷且变化趋于平缓。 (4)在1400 nm、1900 nm、2200 nm 附近存在明显 的水分吸收谷,但3条曲线吸收深度不同。1400 nm 附近为羟基(-OH)带谱,1900 nm 附近为 H₂O 谱带,2200 nm 附近为羟基伸缩振动与 AL-OH 和 Mg-OH 弯曲振动的合谱带^[22-23]。

土壤光谱反射率经过去包络线处理后,将其反射率归一化到0~1之间,光谱的吸收特征也归一化到一致的光谱背景上^[24],有效地突出反射光谱曲线特征(图3)。其表现出:(1)3条光谱曲线的吸收谷更加明显,除了1400 nm、1900 nm、2200 nm 附近外,在500 nm、700 nm、850~1150 nm 波段、2000

nm 附近都存在吸收谷,而这些特征在图 2 中难以分 辨出。因此,去包络线有利于突出土壤光谱曲线的 异质性特征。(2)对比 3 个等级有机质含量的去包 络线曲线发现,当光谱反射率≥2 100 nm,3 个等级 的去包络线曲线差异较小;而<2 100 nm 的光谱范 围内呈现显著差异。说明去包络线凸显了不同含 量土壤有机质的光谱反射率的特点。(3)3 条曲线 在 500 nm、700 nm、2 000 nm 波段附近均出现明显 的波谷,尤其在 700 nm 附近,极缺乏的吸收深度为 0.066,很缺乏的吸收深度为 0.042,缺乏的吸收深度 为 0.004。表明土壤有机质含量越多,其光谱的吸收 能力越强,这与纪文君^[25]等利用全国的光谱数据进 行土壤有机质去包络线后结果一致。以上分析说 明,土壤有机质含量与土壤反射率特征具有一定相关 性,且在450~2100 nm 光谱范围内存在敏感波段。

2.3 土壤有机质与光谱反射率的相关性分析

2.3.1 土壤有机质与全波段光谱反射率相关分析 用全波段(450~2 350 nm)的 R、R'、lg(1/R)、lg(1/R)'、CR与土壤有机质含量分别进行相关性分析,绘制相关关系曲线(图4)。R与土壤有机质含量呈负相关,曲线整体上比较平滑,在450~700 nm、1400 nm、1900 nm、2200 nm 附近有微弱的低谷;lg(1/R)与有机质含量呈正相关,与R相关系数绝对值趋势大体一致,相关系数都在0.43 以上;R'、lg(1/R)'和CR与有机质含量相关系数在正负值之间 波动。与R相关系数曲线相比,反射率经过变换后提高了与有机质含量的相关系数,一些细小的光谱吸收特征被扩大。

Fig.3 The curve of the removal of organic matter with different envelope

Fig.4 Correlation analysis between soil organic matter content and its original spectral reflectance

2.3.2 光谱显著性波段挑选 将 *R*、*R*′、lg(1/*R*)、lg(1/*R*)′、*CR*与有机质含量相关性通过 *P*=0.01 水平检验的作为显著性波段。通过检验的波段有:*R*的波段为 550~870、1 400~1 700、2 000~2 350 nm;*R*′的波段为 500~900 nm、1 000~1 300 nm、1 600~2 300 nm; lg(1/*R*)的波段为 525~1 000、1 150~1 250、1 500~1 700、2 000~2 200 nm; lg(1/*R*)′的波段为 800~1 750、2 000~2 350 nm;*CR*的波段为 800~960、1 050~1 110、2 000~2 100 nm。其中光谱反射率与有机质含量相关系数由 0.36 提高到 0.53,说明反射率经数学变换后一些细小的光谱吸收特征被扩大。

2.4 土壤有机质 PLSR 模型建立与验证

分别以全波段(450~2 350 nm)和显著性波段的5种光谱数学变换形式(*R*、*R*′、lg(1/*R*)、lg(1/*R*)′、*CR*)为自变量,土壤有机质含量为因变量,建立相应的PLSR模型。

在 5 种光谱数学变换形式建模中,全波段(450~2 350 nm)的建模效果 R²、RPD 均高于显著性波段 对应值,而全波段 RMSE 与之相反,说明全波段的建 模的模型精度大于显著性波段。在全波段建模方 法中,R 和 lg(1/R)模型的 RPD 在 1.8~2.0 之间,说 明二者模型的预测能力较好。R'、lg(1/R)'和 CR 模型的 RDP 均大于 2.0,表明其预测能力极好。对 比各反演模型精度,CR 建模和验证均优于其它 4 种 模型,其 R²为 0.84,RMSE 为 3.24,模型验证的 R²为 0.79,RMSE 为 4.12,RDP 为 2.18;在显著性建模中, R 的模型 RDP 在 1.4~1.8,只能对有机质含量进行 一般预测。lg(1/R)'和 lg(1/R)的模型 RDP 均在 1. 8~2.0,表明其模型预测能力较好。R'和 CR 的模型 RDP 都大于 2.0,对有机质含量极好预测能力;CR 建立的模型 R²无论在全波段还是显著性建模中,该 模型精度最高且误差最小,是土壤有机质含量的最 佳预测模型。

在全波段(450~2 350 nm)和显著性波段建模 中,对R进行变换后的模型精度均有所提升。比如 全波段 R 的建模 R^2 为 0.61,反射率经过 lg(1/R)变 换后 R²达到 0.69, 说明反射率倒数的对数的变换后 增强了的光谱间信息。经过微分变换 R'建模的 R² 达到了 0.81,表明光谱反射率作一阶微分变换可以 对重叠混合光谱进行分解以便识别,扩大样品之间 的光谱特征差异。CR处理后建立的模型 R²为0.84, 揭示了 CR 处理能增加土壤中有机质含量的光谱反 射率,同时也论证了图3去包络线后不同有机质含 量光谱曲线的明显特征。虽然全波段(450~2 350 nm)和显著性波段建模方法精度存在差距,全波段 对有机质含量的预测能力略好,但是全波段 CR 模 型的 RPD 仅比显著性波段模型高 0.03。因此,选择 显著性波段 CR 模型作为估测该荒地土壤有机质含 量的模型。其利用的波段少,减少了数据的冗繁, 提高在实际工作的效率,缩短建模时间,具有比较 好的解释能力,更适合大面积野外精准估测土壤有 机质含量。

3 讨 论

以上研究表明,对于干旱区荒地有机质含量低的土壤,随着有机质含量的增加,光谱反射率逐渐减小,说明有机质含量与土壤光谱反射率具有呈负相关,同时有机质含量能在土壤光谱信息中得到一定反映,其中相关系数最大0.59,其建模集和检验集 *R*²最高值分别为0.84 和0.79,更加支持了利用土壤高光谱反演土壤有机质含量具有可行性。

表 3 不同光谱数学变换形式建模及验证比较

Table 3 Modeling and validation based on different spectral mathematical transformation forms

	全波段 Full bands					显著性波段 Significant bands				
光谱数据	光谱数据 建模集 pectral data Calibration set		检验集 Predication set			建模集 Calibration set		检验集 Predication set		
Spectral data										
-	R^2	RMSE	R^2	RMSE	RPD	R^2	RMSE	R^2	RMSE	RPD
R	0.61	5.37	0.53	5.83	1.86	0.59	5.74	0.55	5.98	1.73
R'	0.81	4.06	0.78	4.51	2.16	0.78	4.15	0.71	5.53	2.08
lg(1/R)	0.69	4.53	0.56	5.69	1.93	0.62	4.95	0.59	5.84	1.86
$\lg(1/R)'$	0.73	4.15	0.60	4.78	2.11	0.67	4.35	0.63	5.71	1.97
CR	0.84	3.24	0.79	4.12	2.18	0.79	3.92	0.72	5.26	2.15

此外本次试验在野外测量,受到很多自然和人 为因素的影响,因此,对 R 进行 4 种数学变换消除 诸多因素对光谱信息的影响,突出光谱反射率与土 壤成分含量相关性,从而提升了建模的精度^[26]。发 现一阶微分和去包络线后建立的模型精度较优。 这与它们计算方法密切有关,一阶微分能使隐蔽的 光谱信息得到增加,去包络线能使有机质光谱吸收 特征信息被释放出来。这与于雷等以汉江平原土 壤为研究对象,采用微分和包络线后的结果 一致^[10]。

对比发现全波段建模效果优于显著性波段,这 主要是显著性波段建模仅应用了全波段的建模部 分波段,可能造成一些数据损失,但是避免了波段 间的过度拟合,因而导致 *RPD*偏低。而全波段应用 了土壤光谱信息所有波段,考虑了全光谱的信息, 所以建模精度稍高于显著性波段建模效果。然而, 从模型的复杂度上说,显著性波段的 PLSR 模型与 全波段对比在模型精度方面虽有一定差距,但从模 型的复杂程度来比较,具有模型简单、运算量小、变 量更少的特点,而且节省了运算时间,建模过程也 更快速,适合用于对模型精度要求较高的场合,对 今后的便携仪器设备开发有一定的指导作用^[27-28]。

4 结 论

本文以阜康中部荒地土壤有机质以研究对象, 采用野外采集光谱数据,分析了土壤有机质的光谱 特性。首先重点探讨了以全国第二次土壤普查及 有关标准,按有机质含量对应其光谱进行分级,诠 释了土壤有机质含量与土壤光谱的特性。其次利 用 64 个点土壤反射率并选取了全波段(450~2 350 nm)和显著性波段结合 PLSR 建型,并对不同处理 光谱反射率的结果用于有机质含量建模和检验,找 出其差异,得出了去包络线建模能有效提高估测精 度。具体结论如下:

(1)不同有机质含量与土壤原始光谱反射率呈 现负相关关系,即有机质含量越高,其光谱反射率 越低,同时1400 nm、1900 nm、2200 nm 附近存在 明显的水分吸收谷。经去包络线后,在500 nm、700 nm、850~1150 nm 波段、2000 nm 附近呈现显著差 异,同时土壤有机质含量越多,土壤光谱反射率吸 收深度越大。

(2)分析有机质含量与光谱反射率相关系数, 发现光谱反射率经过4种数学变换后提高了与有机 质含量的相关系数,相关系数由0.36提高到0.53, 说明数学变换后一些细小的光谱吸收特征被扩大。

(3) 在全波段建模方法中, *CR* 精度优于其它 4 种模型, 其 *R*²为 0.84, *RMSE* 为 3.24, 模型验证的 *R*² 为 0.79, *RMSE* 为 4.12, *RPD* 为 2.18, 能极好的预测 有机质含量。同时, *CR*、*R'*和 lg(1/*R*)'建模集的 *RDP* 均大于 2.0, 表明这 3 种建模的预测能力好; 在 显著性波段建模中, *R* 建立的模型 *RDP* 均低于 2.0。 虽然 *R'*和 *CR* 的模型 *RDP* 均大于 2.0, 可以准确预 测有机质含量, 但 *CR* 的 *R*², *RPD* 更高, 说明选择 *CR* 建模的效果最好。

(4)在5种光谱反射率数学变换的建模中,全 波段(450~2350nm)精度均略优于显著性波段,但 其使用数据量大,增加了计算量。其 CR 模型的 RPD 仅比显著性波段模型的高 0.03,同时显著性波 段建模方便快捷。因此,选择显著性波段 CR 模型 作为估测该荒地土壤有机质含量的模型更可行。

该模型对其它地区是否适用,有待以后研究过 程中进一步深度验证。因此,在今后工作中,应加 大光谱研究区域,完善土壤光谱信息库。另外,同 时建立荒地有机质含量变化监测系统,为干旱区新 疆阜康有机质含量低荒地的建模提供理论基础,区 域的研究还可为遥感影像与野外实测光谱相结合 提供更为客观的辐射信息。

参考文献:

- [1] 熊毅,李庆逵.中国土壤[M].北京:科学出版社,1987:390-417.
- [2] Henderson T L, Umgardner M F, Ranzeier D P, et al.Dimensional reflectance analysis of soil organic matter [J].Soil Sci.Soc.Am.J, 1992, 56:865-872.

- [3] Al-Abbas A H, Swain P H, Baumgarder M F. Relating organic matter and clay content to the multi-spectral radiance of soils [J]. Soil Science, 1972, 114(6):477-485.
- [4] Baumgardner M F, Silva L F, Biehl L L, et al.Reflectance proper-ties of soils[J].Advances in Agronomy, 1985, 38:1-44.
- [5] Hummel J W, Sudduth K A, Hollinger S E.Soil moisture and organic matter Prediction of surface and subsurface soils using an NIR soil senso[J]. ComPuters and Electronics in Agriculture, 2001, 32 (2): 149-165.
- [6] 徐明星,周生路,丁卫,等.苏北沿海滩涂地区土壤有机质含量的高 光谱预测[J].农业工程学报,2011,27(2):219-223.
- [7] 谭琨,张倩倩,曹茜,等.基于粒子群优化支持向量机的矿区土壤有 机质含量高光谱反演[J].地球科学:中国地质大学学报,2015,(8): 1339-1345.
- [8] 叶勤,姜雪芹,李西灿,等.基于高光谱数据的土壤有机质含量反演 模型比较[J].农业机械学报,2017,(03):164-172.
- [9] 王一丁,赵铭钦,刘鹏飞,等.基于高光谱分析的植烟土壤有机质和 全氮含量预测研究[J].中国烟草学报,2016,(03):44-51.
- [10] 于雷,洪永胜,耿雷,等.基于偏最小二乘回归的土壤有机质含量高 光谱估算[J].农业工程学报,2015,31(14):103-109.
- [11] 南锋,朱洪芬,毕如田.黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测[J].中国农业科学,2016,49(11):2126-2135.
- [12] 朱登胜,吴迪,宋海燕,等.应用近红外光谱法测定土壤的有机质和 pH 值[J].农业工程学报,2008,24(6):196-199.
- [13] 李颉,张小超,苑严伟,等.北京典型耕作土壤养分的近红外光谱分析[J].农业工程学报,2012,28(02):176-179.
- [14] 李荣荣,熊黑钢,段鹏程,等.干旱区平原水库下游盐渍化土壤光谱 时空分布特征分析[J].土壤通报,2016,47(3):532-536.
- [15] 何挺,王静,林宗坚,等.土壤有机质光谱特征研究[J].武汉大学学

报(信息科学版),2006,(11):975-979.

- [16] 郑光辉,焦彩霞,赏刚,等.土壤全氮反射光谱估算机理研究[J].光 谱学与光谱分析,2016,(10):3222-3225.
- [17] 韩云霞,李民赞,李道亮.基于光谱学与遥感技术的矿区废弃地土 壤特性参数分析[J].吉林大学学报,2009,39(1):254-257.
- [18] 郭熙,叶英聪,谢碧裕,等.南方丘陵稻田土碱解氮高光谱特征及反 演模型研究[J].国土资源遥感,2015,27(2):94-99.
- [19] Viscarra R V, McGlyn R N, McBratney A B. Determing the composition of mineral-organic mixes using UV-vis-NIR diffuse Reflectance spectroscopy[J].Geoderma,2006,137(1/2):70-82.
- [20] 全国第二次土壤普查养分分级标准[EB/OL].[2012-05-10], http://wenku.baidu.com/view /1242f6ef856a2561252d36f6e.html.
- [21] 官晓,周萍,陈圣波.基于地面实测光谱的土壤有机质含量预测 [J].国土资源遥感,2014,26(2):105-111.
- [22] 季耿善,徐彬彬.土壤黏土矿物反射特性及其在土壤学上的应用 [J].土壤学报,1987,24(1):67-76.
- [23] 彭杰,周清,张杨珠,等.有机质对土壤光谱特性的影响研究[J].土 壤学报,2013,50(3):517-524.
- [24] 金慧凝,张柏,王宗明,等.基于反射光谱特征的土壤盐碱化评价 [J].红外与毫米波学报,2008,27(2):138-142.
- [25] 纪文君,史舟,周清,等.几种不同类型土壤的 VIS-NIR 光谱特性及 有机质响应波段[J].红外与毫米波学报,2012,(03):277-282.
- [26] 郭斗斗,黄绍敏,张水清,等.多种潮土有机质高光谱预测模型的对 比分析[J].农业工程学报,2014,30(21):192-200.
- [27] 丁希斌,刘飞,张初,等.基于高光谱成像技术的油菜叶片 SPAD 值 检测[J].光谱学与光谱分析,2015,35(2):486-491.
- [28] 纪文君,史舟,周清,等.几种不同类型土壤的 VIS-NIR 光谱特性及 有机质响应波段[J].红外与毫米波学报,2012,31(3):277-282.

(上接第206页)

- [15] 李龙,姚云峰,秦富仓,等.半干旱区县域尺度土壤有机碳 的空间变异特征[J].生态学杂志,2016,35(8):2003-2008.
- [16] 唐梦迎,丁建丽,夏楠,等.干旱区典型绿洲土壤有机质含量 分布特征及其影响因素[J].土壤学报,2017,54(03): 759-766.
- [17] 李相. 绿洲-荒漠交错带浅层地下水埋深遥感提取实验分析 [D]. 乌鲁木齐:新疆大学, 2016.
- [18] 曹雷,丁建丽,玉米提.哈力克,等.基于国产高分一号卫星 数据的区域土壤盐渍化信息提取与建模[J].土壤学报, 2016,53(6):1399-1409.
- [19] 马成霞,丁建丽,杨爱霞,等.绿洲区域土壤盐渍化主要参数的空间异质性分析[J].干旱区资源与环境,2015,29
 (2):144-150.
- [20] 黄帅,丁建丽,李相,等.土壤盐渍化高光谱特征分析与建模
 [J].土壤通报,2016,47(5):1042-1048.
- [21] 王冬梅.辽河中下游土壤含水率的监测及分析[J].水科学与 工程技术,2016,(04):42-43.
- [22] 秦嘉海,张勇,赵芸晨,等.黑河上游冰沟流域4种土壤有机碳分布特征与土壤特性的关系[J].干旱地区农业研究,2013,31(5):200-206.
- [23] Castaldi F, Palombo A, Santini F, et al. Evaluation of the poten-

tial of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon [J]. Remote Sensing of Environment, 2016, 179:54-65.

- [24] 宋丰骥,常庆瑞,钟德燕,等.土丘陵沟壑区土壤微量元素 空间变异特征及其影响因素[J].干旱地区农业研究,2012, 30(1):36-42.
- [25] Gomez C, Rossel R A V, Mcbratney A B, et al. Soil organic carbon prediction by hyperspectral remote sensing and filed vis-NIR spectroscopy : An Australian case study [J]. Geodema, 2008, 146(3-4): 403-411.
- [26] 李龙,姚云峰,秦富仓,等.基于地理加权回归模型的土壤有 机碳密度影响因子分析[J].科技导报,2016,34(2): 247-254.
- [27] Yang H F, Li J. Predictions of soil organic carbon using laboratory - based hyperspectral data in the northern Tianshan mountains, China[J]. Environmental Monitoring & Assessment, 2013, 185(5): 897-908.
- [28] 杨顺华,张海涛,陈家赢,等.平原丘陵过渡带土壤有机碳 空间分布及环境影响[J].中国环境科学,2015,35(12): 3728-3736.