文章编号:1000-7601(2019)04-0223-08

doi:10.7606/j.issn.1000-7601.2019.04.30

综合干旱指数的构建及其在 泾惠渠灌区的应用

王玺圳,粟晓玲,张更喜

(西北农林科技大学水利与建筑工程学院,陕西杨凌 712100)

摘 要:基于标准化降水蒸散发指数(SPEI)、归一化植被指数(NDVI)、标准化土壤含水量指数(SSI)和标准化 地下水指数(SGI)4个反映地区农业干旱的指数,利用 CRITIC 客观赋权法构建了综合干旱指数(CDI),以泾惠渠灌 区为研究区,计算综合干旱指数,并与改进的帕默尔干旱指数(sc-PDSI)进行相关性分析评价其适用性,采用 Mann-Kendall 检验法分析了泾惠渠灌区 2002-2013 年农业干旱的发展趋势。结果表明:构建的综合干旱指数(CDI)与自 适应帕默尔干旱指数(sc-PDSI)具有强相关性,皮尔逊相关系数为 0.73,CDI 与 sc-PDSI 在对旱情监测结果上相关性 显著,两者在时间演进上趋势整体相同,说明综合干旱指数(CDI)可以较为准确地反映研究区的干旱情况,在研究区 适用性较强。利用综合干旱指数(CDI)对泾惠渠灌区的干旱特性进行了分析,月际间分析发现泾惠渠灌区在 4、6 月 和 11 月较容易发生干旱,而 2 月和 8 月灌区较为湿润,季节间分析发现泾惠渠灌区在 2003 年发生了严重的春旱,2002 年发 生了严重的夏旱和秋旱,2009 年发生了严重的冬旱。年际间分析发现泾惠渠灌区的 CDI 值在 2002—2013 年间大约 以 0.032 · a⁻¹的速度波动上升,说明研究区干旱有缓解趋势。利用 Mann-Kendall 突变检验法分析出泾惠渠灌区的旱 情在 2011 年 7 月发生了显著突变,CDI 趋势由降低转为增加,表明研究区在此时间点后呈湿润化趋势。

关键词:SPEI;NDVI;SSI;SGI;综合干旱指数;CRITIC 客观赋权法;泾惠渠灌区

中图分类号:S423 文献标志码:A

Construction of comprehensive drought index and its application in Jinghui irrigation area

WANG Xi-zhen, SU Xiao-ling, ZHANG Geng-xi

(College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China)

Abstract: Based on the indices of standardized precipitation evapotranspiration index (SPEI), normalized vegetation index (NDVI), standardized soil moisture index (SSI), and standardized groundwater index (SGI), acomprehensive drought index (CDI) was constructed using the objective weighting method of CRITIC forJinghui irrigation area. The drought index, and the correlation analysis of the self-calibrating palmer drought severity index (sc-PDSI), was used to evaluate its applicability, and the development trend of agricultural drought in the study area in 2002–2013 was analyzed with Mann–Kendall test. The comprehensive drought index (CDI) was strongly correlated with the self-calibrating palmer drought index (sc-PDSI). The correlation coefficient was 0.73 indicating that the comprehensive drought index (CDI) could accurately reflect the drought situation in the study area, and has strong applicability in the study area. Inter-monthly analysis found that the Jinghuiirrigation area was prone to drought in April, June, and November, while the irrigation areas in February and August were relatively humid. Inter-seasonal analysis found that the irrigation area experienced severe spring drought in 2003. In 2002, severe summer drought and autumn drought occurred. In 2009, a severe winter drought occurred. The inter-annual analysis found that the CDI value of the Jinghuiirrigation area fluctuated at a rate of $0.032 \cdot a^{-1}$ between 2002 and 2013 indica-

基金项目:国家自然科学基金项目(51879222)

收稿日期:2018-07-20 修回日期:2018-10-11

作者简介:王玺圳(1993-),男,陕西西安人,硕士研究生,研究方向为干旱地区水文水资源研究。E-mail:wangxizhen1993@163.com 通信作者:栗晓玲(1968-),女,四川开江人,教授,博士生导师,主要从事水资源规划与管理。E-mail:suxiaoling17@126.com

ting that the drought in the study area had a tendency to alleviate. The Mann-Kendall mutation test was used to analyze the drought in the Jinghuiirrigation area. In July 2011, a significant change occurred, and the CDI trend changed from decreasing to increasing indicating that the study area showed a humidification trend after this time point.

Keywords: SPEI; NDVI; SSI; SGI; Comprehensive drought index; CRITIC objective weighting method; Jinghui irrigation area

干旱是由气候异常引起的自然灾害,具有发生 频率高、影响范围大、持续时间长、危害性大的特 点,在全球气候变化条件下,干旱的覆盖范围最广、 造成经济损失最大,对人类的影响最为严重,已成 为学者们研究的一个热点科学问题^[1-3]。干旱产生 的原因很多,影响因素包括温度、蒸散发、土壤水分 亏缺、地下水供给不足等^[4]。由于考虑的影响因素 和侧重点不同,各地区和机构对干旱的定义也不 同,计算的干旱指数也有差异^[5]。选取合适的干旱 评价指标是研究区域干旱的基础和前提,美国气象 学会在综合了各类干旱定义后,总结出了目前被公 认的4种类型干旱^[6],即:气象干旱(由降水和蒸发 失衡所引发)、水文干旱(河流径流量低于多年平均 正常值)、农业干旱(土壤含水量低于植物需水量) 和社会经济干旱(由于缺水影响社会经济活动)。

降水量是气象干旱评价的要素,可通过降水量 来确定研究区的旱涝情况^[7]。McKee 等^[8]在研究 美国科罗拉多州干旱情况时提出了标准化降水指 数(SPI),适用于月尺度对当地干旱的检测与评估, 能较好反映干旱强度和持续时间,可灵活应用并消 除空间分布差异性,且对干旱的变化反映敏感。Vicente-Serrano 等^[9]在 SPI 指数的基础上考虑了降水 与潜在蒸散发的相互关系,将气温、降水与潜在蒸散 发的差值作为输入变量创建了标准化降水蒸散发指 数(SPEI)。Palmer^[10]提出的帕默尔指数(PDSI)同时 考虑了降水和温度的影响,在干旱指数发展史上具有 里程碑意义,但是也具有一定局限性,其主要适用于 干旱半干旱区域,缺乏普适性^[11]。Wells^[12]提出的自 校准帕默尔干旱指数(sc-PDSI)对传统 PDSI 进行了 改进,利用研究站点的纬度及历史资料对 PDSI 中的 经验系数进行自校正,使其具有更好的空间适用性, 目前已被广泛应用于干旱研究[13-16]。

气候是植被变化的重要驱动因子,而植被变化 可以直观反映区域内干湿情况,利用归一化植被指 数(NDVI)能够反映植被演变特性,可以用 NDVI 指 数从侧面对农业干旱程度进行评估^[17]。由于干旱 与多种气象水文因素有关,如降水、径流以及土壤 水分、地下水等,仅由降雨或降雨和蒸发定义的干 旱不一定导致农业干旱,而土壤水分亏缺、地下水 位下降也可能导致农业干旱^[18]。针对各种类型的 干旱,研究者们构建了各类综合干旱指数,闫桂 霞^[19]等将 SPI和 PDSI两指标结合构建了综合干旱 指数,任怡等^[20]将 SPI、SPEI和 PDSI 3个指标结合 进行综合指标计算,Qin等^[21]利用 SPI和土壤湿度 数据构建的指数分析了海河盆地干旱情况,Zhang 等^[22]利用降水量、蒸发量和土壤含水量构建的多变 量干旱指数对农业气象干旱进行了监测。然而目 前利用单指标或构建的综合指标进行农业干旱评 价研究中,少有考虑地下水干旱指标,而地下水又 和人类活动对干旱的影响密切相关^[23]。已有研究 表明泾惠渠灌区内地下水超采严重^[24-25],且农业干 旱程度对地下水指标的敏感性很强,因此在综合指 标中加入地下水数据很有必要。

本论文将标准化降水蒸散发指数(SPEI)、归一 化植被覆盖指数(NDVI)、标准化土壤含水量指数 (SSI)和标准化地下水指数(SGI)作为输入变量,利 用 CRITIC 客观赋权法构建可以综合反映降水、蒸 发、植被、土壤水分以及地下水等多变量的综合干 旱指数(CDI),并以泾惠渠灌区为例,结合研究区域 的历史干旱资料和自适应帕默尔干旱指数(sc-PDSI)与综合农业干旱指数进行分析对比,评价综 合干旱指数在研究区的适用性,利用 Mann-Kendall 检验法分析泾惠渠灌区农业干旱的发展演变趋势。

1 研究区概况

选取陕西省关中平原中部的泾惠渠灌区作为研究对象。地理范围:N34°25′20″~N34°41′40″、 E108°34′34″~E109°21′35″(图1),灌区东、西、南三 面被石川河、泾河及渭河围绕,北靠仲山和黄土台 塬,东西长约70 km,南北宽约20 km,范围涉及泾 阳、三原、富平三县和西安市阎良区、高陵区、临潼 区三个区。地势西北高、东南低,年平均降水量为 535 mm,年平均蒸发量为1212 mm,灌区粮食作物 以小麦和玉米为主。

2 研究方法与数据来源

2.1 计算单一干旱指标

2.1.1 SPEI 计算步骤^[26] 应用彭曼公式计算逐月 潜在蒸散量:

表1 标准化降水蒸散指数干旱等级划分

Table 1 Classification of drought grade of SPEI

干旱等级 Drought level	类型 Type	SPEI
1	无旱 Normal level	-0.5 <spei< td=""></spei<>
2	轻度干旱 Mild drought	$-1.0 < \text{SPEI} \le -0.5$
3	中度干旱 Moderate drought	$-1.5 < \text{SPEI} \le -1.0$
4	严重干旱 Severe drought	$-2.0 < \text{SPEI} \le -1.5$
5	极端干旱 Extreme drought	$SPEI \leq -2.0$

注:来源于文献[27]。

Note: From literature [27].

本次研究所采用的降水、气温等气象资料来源于泾惠渠灌区内的各个气象站点统计数据,时间范围为 2002 年 1 月至 2013 年 12 月。

2.1.2 SSI 和 SGI 的计算 计算 SSI 和 SGI 时,假设 土壤相对湿度和地下水埋深是偏态分布,利用 Gamma Weibull Beta Logistic Log-Logistic Pearson-III 、 Erlang, Gumbel, Generalized extreme value, Normal, Burr 等常见分布对数据拟合,得出土壤相对湿度服 从广义极值(Generalized extreme value)分布,地下 水埋深服从韦布尔(Weibull)分布,且两者均通过了 显著性水平 α = 0.05(置信度为 95%)的 KS 检验。 在计算出分布概率后利用极大似然估计法求出分 布函数的参数,再对分布概率进行标准正态化处 理,即可得到标准化土壤湿度指数(SSI)和标准化 地下水指数(SGI)。本次研究所用的土壤相对湿度 数据来源于国家气象科学数据共享服务平台 (http://data.cma.cn),地下水埋深数据来源于《陕 西省地下水监测统计年鉴》^[28]。两类数据时间范围 为 2002 年 1 月至 2013 年 12 月。鉴于 SPEI、NDVI 和 SSI 三个指数都是随着干旱强度增加而减小,而 地下水埋深是随着干旱强度增加而变大,为使4个 指数物理意义一致,因此对计算的 SGI 统一取其相 反数,即为最终的 SGI 指数。

2.1.3 NDVI 的来源 NDVI 是一个综合植被指数, 能反映植被的叶绿素、叶片水分含量等信息,目前 已被广泛用于作物分类和长势监测、作物估产、生 物量估算、地表蒸散、土壤湿度监测、气候变化等方 面的研究。本研究所采用的 NDVI 来源于地理空间

图 1 泾惠渠灌区概况

Fig.1 Map of Jinghui irrigation area

式中,*PET* 为某时期潜在蒸散发量(mm); P_0 为海平 面平均气压(mb);*P* 为本站平均气压(mb); Δ 为饱 和水汽压曲线在 $T = T_a$ 处的斜率(mb· \mathbb{C}^{-1}); γ 为温 度湿度计算常数0.66; R_A 为天文辐射值(mm·d⁻¹); a 和 b 为根据日照时数估算总辐射量的系数;n 为平 均日照时间(h);N 为某纬度、某月天文日平均可照 时间; σT_k^4 为气温 T_k 时的黑体辐射, 化为蒸发当量 (mm), $\sigma = 2.01 \times 10^{-8}$ (mm·d⁻¹· \mathbb{C}^{-4}); e_a 为饱和 水汽压(hPa); e_d 为实际水汽压(hPa);C 为风速系 数;u 为距地面 2 m 高的平均风速(m·s⁻¹)。计算逐 月降水与潜在蒸散发的差值:

$$D_i = P_i - PET_i \tag{2}$$

式中, P_i 为月降水量, PET_i 为月潜在蒸散量。采用 三参数的 Log – logistic 分布对 D_i 进行拟合,并求出 概率分布函数:

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x - \gamma}{\alpha} \right)^{\beta - 1} \left[1 + \left(\frac{x - \gamma}{\alpha} \right)^{\beta} \right]^{-2} \quad (3)$$

$$F(x) = \int_0^x f(t) dt = \left[1 + \left(\frac{\alpha}{x - \gamma}\right)^\beta\right]^{-1} \quad (4)$$

式中,参数 α , β , γ 分别采用线性距法拟合得到,f(x)为概率密度函数,F(x)为概率分布函数。然后对概率分布函数进行标准化处理:

令 P = 1 - F(x), 当累积概率 $P \le 0.5$ 时, 参数 $W = \sqrt{-2\ln P}$,

$$SPEI = W - \frac{C_0 + C_1 + C_2 W^2}{1 + d_1 W + d_2 W^2 + d_3 W^3}$$
(5)

当
$$P > 0.5$$
 时,参数 $W = \sqrt{-2\ln(1-P)}$,

$$SPEI = \frac{C_0 + C_1 + C_2 W^2}{1 + d_1 W + d_2 W^2 + d_3 W^3} - W \quad (6)$$

数据云(http://www.gscloud.cn)的中国区域 500 m 分辨率 NDVI 月合成产品。利用 ENVI 5.1 中的"统 计分析"功能计算研究区逐月 NDVI 面均值,作为综 合干旱指数的 NDVI 输入部分,时间为 2002 年 1 月 至 2013 年 12 月。

2.2 构建综合干旱指数(CDI)

研究区共有 24 眼资料完备的监测井(图 1),利 用 Arcgis10.3 软件的"构建泰森多边形"方法将研究 区域划分为若干小区域,代表每个站点所控制的面 积,将站点控制面积与研究区域总面积的比例作为 权重系数,与监测站点的 SGI 相乘加权得到研究区 域 SGI 面均值,同理,可计算出研究区域 SPEI 面均 值及 SSI 面均值。

将泾惠渠灌区内的 NDVI、SGI、SSI、SPEI 四指标的面均值分别作为输入指标,利用 CRITIC 赋权法构建综合干旱指数 CDI。CRITIC 法(Criteria importance through intercriteria correlation, CRITIC)是一种客观赋权法,由 Diakoulaki^[29]最先提出。该方法利用指标的冲突性和信息量大小给指标赋权重,其中冲突性是以指标间的相关系数来表示,若指标间相关性较高,则说明指标间冲突性较低;信息量由每个指标的标准离差来判断,若某指标的所有评价指数标准差越大,则认为此指标的信息量越大。CRITIC 法是相关性权重和信息量权重的结合,在赋权重方面具有显著的优越性。第j个指标与其他指标的冲突性表示为:

$$\sum_{i=1}^{n} (1 - r_{ij}) \tag{7}$$

式中,r_{ij}为指标 i 和 j 之间的相关系数。各个指标的 客观权重值利用冲突性和对比强度来计算,若 C_j 表 示第 j 个评价指标所包含的信息量,则

$$C_{j} = \delta_{j} \sum_{i=1}^{n} (1 - r_{ij})$$
(8)

式中, δ_j 为第j个评价指标的标准差,n为一个评价指标的评价数量。 C_j 越大,则该指标的重要性越大。 设 W_i 为第j个指标的客观权重,则

$$W_j = \frac{C_j}{\sum_{j=1}^m C_j}$$
(9)

式中,m为所有指标的数量。

因此,综合考虑农业干旱的影响因素,构建的 综合干旱指数(CDI) 计算公式为:

$$CDI = \sum_{j=1}^{4} W_j D_j \tag{10}$$

式中:D;分别为指标 SPEI、NDVI、SSI 和 SGI;W;为

利用 CRITIC 法计算的权重系数。

2.3 计算自适应的帕默尔干旱指数(sc-PDSI)

本次研究将构建的综合干旱指数(CDI)与自适 应帕默尔干旱指数(sc-PDSI)进行相关性分析来评 价综合指标的适用性。帕默尔在 1965 年提出帕默 尔干旱指数^[10],目的是测量陆地表面水分供需的累 积距平。由于同时考虑了降水量和气温的影响,因 此被广泛用于干旱评估、干旱时空分布、气候评价 等方面,但由于帕默尔干旱指数对于不同地区的干 旱分析有较大差异,被认为不适用于不同地区的干 旱评估。由此 Wells^[12] 对帕默尔干旱指数进行了改 进,得到了自适应的帕默尔干旱指数 sc-PDSI,它是 通过动态计算值替代原经验常数来校准月尺度 PDSI 值。本次研究利用美国内布拉斯加大学的 sc-PDSI 计算程序(http://greenleaf.unl.edu)进行计算, 需要输入的参数包括:研究站点的月平均温度、月 平均降水量、多年月平均温度、有效持水量(AWC) 和站点纬度。有效持水量(AWC)数据来源于联合 国粮农组织(FAO)和维也纳国际应用系统研究所 (IIASA)构建的世界土壤数据库(HWSD),该数据 库下载自寒区旱区科学数据中心(http://westdc. westgis.ac.cn)。帕默尔干旱指数原理是气候适应下 的水量平衡方程:

$$\hat{P} = \hat{ET} + \hat{R} + \hat{RO} - \hat{L} = \alpha P E + \beta P R + \gamma P R O + \delta P L$$
(11)

式中, P 代表气候适宜降水量; ET 代表气候适宜蒸 散量; R 代表气候适宜补充水量; RO 代表气候适宜 径流量, L 代表气候适宜流失水量。α 为蒸散系数 β 为土壤水分供给系数、γ 为径流系数 δ 为土壤水损 耗系数。再利用实际降水量 P 与气候适宜条件下的 降水量 P 相减得到水分距平 d:

$$d = P - \hat{P} \tag{12}$$

求出水分距平 d 后,将其与研究地点相应的气候特征系数 K 相乘,得到水分异常值 Z,表示研究地 点相应月份实际气候状况与其多年平均干湿情况 的偏离程度。

$$Z = dK \tag{13}$$

最终确定修正的帕默尔干旱指数公式为:

$$X_i = Z_i / 3 + 0.897 X_{i-1} \tag{14}$$

式中, X_i 为当月的 PDSI 干旱指数; Z_i 为当月的水分 异常指数; X_{i-1} 为上个月的 PDSI 干旱指数;1/3和 0.897称为持续因子。sc - PDSI 干旱等级划分见 表 2。

表 2 自适应帕默尔干旱指数等级划分

Table 2	Classification of sc-PDSI	
Table 2	Classification of sc-PDSI	

干旱等级 Drought level	类型 Type	sc-PDSI
1	无旱 Normal level	-1.0 < sc-PDSI
2	轻度干旱 Mild drought	$-2.0{<}\mathrm{sc}{-}\mathrm{PDSI}{\leq}{-}1.0$
3	中度干旱 Moderate drought	$-3.0{<}\mathrm{sc}{-}\mathrm{PDSI}{\leq}{-}2.0$
4	严重干旱 Severe drought	$-4.0{<}\mathrm{sc}{-}\mathrm{PDSI}{\leq}{-}3.0$
5	极端干旱 Extreme drought	$sc-PDSI \leq -4.0$

注:来源于文献[12]。

Note: From literature [12].

2.4 Mann-Kendall 检验法

Mann-Kendall(MK)检验法^[30]是一种非参数检 验法,与参数检验相比具有适用范围更广、对变量 分布无要求且无需拟合参数等优势,近年来已经在 水文气象要素趋势分析中得到了广泛应用^[31-32]。 Mann-Kendall 检验法步骤详见文献[32]。

3 结果与分析

3.1 综合干旱指数(CDI)的适用性评价

参考 SPI 指数的阈值划分原理,利用计算出的 逐月 CDI 值绘出累积经验分布函数曲线(图 2),结 合 sc-PDSI 阈值的累积概率对 CDI 阈值进行划分, 结果见表 3。

将计算出的 CDI 与 sc-PDSI 以及 4 个单一指标 进行对比来进行适用性评价,见图 3~6。CDI 与 sc-PDSI的皮尔逊相关系数为 0.73, 两者属于强相关。 由图 3 可以看出, CDI 与 sc-PDSI 的变化趋势整体 较为一致,而 sc-PDSI 的变化波动较大,在 2002 年 1月至2002年10月间两指数呈波动下降趋势,整 体为中度至严重干旱:2002年11月至2004年2月 两指数均为波动增加趋势,整体由干旱逐渐转为无 旱:2004年2月至2007年1月CDI呈逐渐下降趋 势,整体由无旱转为中旱、重旱;CDI从2007年5月 至 2010 年 12 月经历了上升-下降-上升-下降的两 个增减周期,sc-PDSI从2007年5月至2011年7月 也经历了两个同样的增减周期,整体变化为严重干 旱-无旱-中度干旱-无旱-严重干旱;CDI从2011 年1月至2012年7月逐渐增加,由严重干旱转为无 旱、之后至2013年12月呈波动下降趋势,由无旱逐 渐转为轻度干旱,sc-PDSI的趋势与 CDI 大体相同, 但转折时间点略有差异且最终转为无旱。

由图 5 可以看出, CDI 与 sc-PDSI 的年内变化 趋势整体较一致, 两者在 5 月和 9 月略有不同。由 图 6 可以看出, CDI 与 sc-PDSI 的年际变化趋势除 2007 年外基本一致, 且 sc-PDSI 的变化范围较大。

Fig.2 CDI and sc-PDSI cumulative probability

表 3 综合干旱指数累积概率及等级划分

Table 3 Cumulative probability and classification of CDI

干旱等级 Drought level	类型 Type	累积概率 P/% Cumulative probability P	综合干旱指数 CDI
1	无旱 Normal level	61 <i><p< i=""></p<></i>	0.33 <cdi< td=""></cdi<>
2	轻度干旱 Mild drought	37< <i>P</i> ≤61	0.10 <cdi≤0.33< td=""></cdi≤0.33<>
3	中度干旱 Moderate drought	15< <i>P</i> ≤37	-0.15 <cdi≤0.10< td=""></cdi≤0.10<>
4	严重干旱 Severe drought	3< <i>P</i> ≤15	-0.45 <cdi≤-0.15< td=""></cdi≤-0.15<>
5	极端干旱 Extreme drought	<i>P</i> ≤3	CDI≤-0.45

分析两者存在差异的主要原因是 CDI 比 sc-PDSI 包含更多干旱相关变量,更能反映此地区的实际干 旱状态。

图 6 CDI 与 sc-PDSI 年际间变化

Fig.6 Interannual variation of CDI and sc-PDSI

结合以上信息,CDI 与 sc-PDSI 在旱情监测上 相关性显著,且时间演进上 CDI 与 sc-PDSI 演进趋 势整体相同,因此,本次研究中采用基于反映降水

图 7 CDI 的 M-K 统计

Fig.7 M-K statistical graph of CDI

与蒸散发相互作用的干旱指标 SPEI,反映植被覆盖 情况的干旱指标 NDVI,反映土壤相对湿度情况的干 旱指标 SSI 和反映地下水位升降情况的干旱指标 SGI 建立的综合干旱指标 CDI 用于泾惠渠灌区农业 干旱变化特性研究。

3.2 泾惠渠灌区农业干旱的变化特性

3.2.1 泾惠渠灌区农业干旱月际和年际变化特性

由图 5 的 CDI 月际间变化可以看出,4、6 月和 11 月的 CDI 值相对较小,泾惠渠灌区在这些月份较容 易发生干旱,而 2 月和 8 月的 CDI 值较大,灌区在这 些月份较为湿润。月际 CDI 值呈波动变化,整体较 平稳。由图 6 的 CDI 年际间变化趋势可以看出,泾 惠渠灌区在 2002—2013 年间的 CDI 值整体呈波动 变化,且略有上升,因此灌区在此期间干旱旱情有 略微缓解。

3.2.2 泾惠渠灌区农业干旱逐月变化特性 对研 究区域 2002 年 1 月至 2013 年 12 月逐月的 CDI 序 列进行 MK 检验。Mann-Kendall 检验法结果见图 7,包括 UF 统计量和 UB 统计量, UF>0 表明序列呈 上升趋势, UF < 0 则表明序列呈下降趋势, UF 统计 量与 UB 统计量的交点为突变开始时刻。泾惠渠灌 区综合干旱指数 CDI 的 MK 检验结果显示该区域 CDI 值在 2002 年 1 月至 2013 年 12 月呈下降-上升 -下降-上升趋势,其中2002年2月至2003年10月 呈显著下降趋势;2004年2月至2005年5月、2012 年8月至2013年12月呈显著上升趋势。UF线与 UB 线在 0.05 显著水平下相交于 2011 年 7 月,交点 存在于95%置信区间内,即泾惠渠灌区农业干旱情 况在 2011 年 7 月发生显著突变, CDI 趋势由降低转 为增加,表明研究区在此时间点后呈湿润化趋势。

第4期

3.2.3 泾惠渠灌区农业千旱季节间变化特性 将 研究区域 2002—2013 年各月 CDI 值按月排序,12 个 月的 CDI 最小值对应的年份见表4。可以推断:2003、 2009年发生了连续两个月以上的严重农业干旱,2002 年发生了9—10月连续两个月的极端农业干旱,2006 年7月、2008年12月也发生了极端农业干旱。

表 4 1—12 月 CDI 最小值及其对应年份

Table 4 Minimum CDI in January to December and its corresponding year

月份 Month	CDI_{\min}	年份 Year	月份 Month	$\mathrm{CDI}_{\mathrm{min}}$	年份 Year	月份 Month	CDI_{\min}	年份 Year
1	-0.43	2009	5	-0.41	2003	9	-0.46	2002
2	-0.16	2009	6	-0.2	2003	10	-0.55	2002
3	-0.39	2003	7	-0.47	2006	11	-0.27	2007
4	-0.36	2009	8	-0.3	2002	12	-0.47	2008

将研究区域 2002—2013 年逐年的各月综合干 旱指数 CDI 按 3 个月为一组,结果见图 6,分季进行 分析。将每 3 个月的 CDI 均值作为季节 CDI 值,将 季节 CDI 最小值视为发生严重农业干旱的季节,列 出其对应年份,见表 5。

可以看出,最严重的春旱发生在 2003 年,最严 重的夏旱和秋旱都发生在 2002 年,最严重的冬旱发 生在 2009 年。由图 6 可以看出:2002 年和 2006 年春 季、2006 年夏季、2006 年和 2008 年秋季、2007 年和 2010 年冬季也发生了较严重的干旱。从季节的 CDI 值趋势看,2002—2013 年春季和夏季的 CDI 值都呈 波动上升趋势,说明研究区的春旱和夏旱有逐渐缓解 趋势;2002 年秋季 CDI 值很小,从 2003—2008 年 CDI 值呈下降趋势,2008 年之后呈波动上升趋势,说明研 究区在 2003—2008 年间的秋季由无旱逐渐变为干 旱,从 2008 年后有所缓解;2002—2013 年冬季 CDI 值 呈上升-下降-上升趋势,其中 2005—2010 年的冬季 发生了连续农业干旱。

由泾惠渠灌区在 2002—2013 年各月(季)综合干 旱指数(CDI)整体趋势可以看出,CDI 呈波动上升状态,说明在此期间研究区域内的农业干旱有所缓解。

4 结 论

本文基于标准化降水蒸散发指数(SPEI)、归一化 植被覆盖指数(NDVI)、标准化土壤含水量指数(SSI)

表 5 最严重季节性干旱与对应年份

Table 5 The most severe seasonal drought and

corresponding year				
干旱类型 Drought type	年份 Year			
春旱 Spring drought	2003			
夏旱 Summer drought	2002			
秋旱 Autumn drought	2002			
冬旱 Winter drought	2009			

图 8 泾惠渠灌区四季 CDI 值变化趋势

Fig.8 Trend of four seasons CDI value in the Jinghui irrigation area

和标准化地下水指数(SGI)利用 CRITIC 客观赋权 法构建了综合干旱指数(CDI),并且根据经验分布 函数曲线划分了 5 个干旱等级。以泾惠渠灌区为 例,获得以下主要结论。

1)综合干旱指数(CDI)与广泛应用的自适应帕 默尔干旱指数(sc-PDSI)相关系数为 0.73,两者具 有强相关性,故 CDI 可较为准确地反映研究区农业 干旱情况,适用性较好。

2)利用 Mann-Kendall 检验法分析了泾惠渠灌 区农业干旱近年来的发展演变趋势,地区农业干旱 情况在 2011 年 7 月发生显著性突变,由之前的干旱 化趋势演变为湿润化趋势。

3) 泾惠渠灌区的逐月 CDI 值在 2002—2013 年 间大约以 0.032 · a⁻¹的速度波动上升, 各季节 CDI 也呈波动上升趋势, 表明农业干旱有所缓解。

而由于本次研究受限于资料序列长度不足,无法 获得 2001 年及之前的泾惠渠灌区内地下水和土壤湿 度资料,故本次研究结果无法分析较长序列年际间干 旱变化趋势,在下一步研究工作中将对此进行改进。

参考文献:

- Amirataee B, Montaseri M, Rezaie H. Regional analysis and derivation of copula-based drought Severity – Area – Frequency curve in Lake Urmia basin, Iran[J]. Journal of Environmental Management, 2017, 206(8):134-144.
- [2] Leng G, Tang Q, Rayburg S. Climate change impacts on meteorological, agricultural and hydrological droughts in China [J]. Global & Planetary Change, 2015, 126(126):23-34.
- [3] Schwalm C R, Wrl A, Michalak A M, et al. Global patterns of drought recovery [J]. Nature, 2017, 548(7666):202-205.
- [4] 刘宪锋,朱秀芳,潘耀忠,等.农业干旱监测研究进展与展望[J].
 地理学报,2015,70(11):1835-1848.
- [5] 程亮,金菊良,郦建强,等.干旱频率分析研究进展[J].水科学进展,2013,24(2):296-302.
- [6] American Meteorological Society. Meteorological drought-Policy statement [J]. Bulletin of American Meteorological Society, 1997, 78 (35):847-849.
- [7] 郭伟,李莹,杜莉丽.基于 SPI 的山西省 1972-2012 年春夏干旱特
 征及对玉米产量的影响分析[J].干旱地区农业研究, 2018, 36
 (1):230-236.
- [8] Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales[R]. Anaheim: The society, 1993: 179-184.
- [9] Vicenteserrano S M, Beguería S, Lópezmoreno J I. Amulti-scalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index [J]. Journal of Climate, 2010, 23(7): 1696-1718.
- [10] Palmer W. Meteorological drought [J]. U.S.department of Commerce Weather Bureau Research Paper, 1965,4(5):45-58.
- [11] 周丹, 张勃, 任培贵, 等. 基于标准化降水蒸散指数的陕西省近 50a 干旱特征分析[J]. 自然资源学报, 2014, 29(4):677-688.
- [12] Wells N, Goddard S, Hayes M J. A self-calibrating Palmer Drought

Severity Index[J]. Journal of Climate, 2010, $17(12)\,{}_{\rm :}2335{\text{-}}2351.$

- [13] 王兆礼,李军,黄泽勤,等.基于改进帕默尔干旱指数的中国气象 干旱时空演变分析[J].农业工程学报,2016,32(2):161-168.
- [14] Lewińska, Katarzyna, Ivits, Eva, Schardt, Mathias, et al. Alpine forest drought monitoring in South Tyrol: PCA based Synergy between scPDSIdata and MODIS derived NDVI and NDII7 time series[J]. Remote Sensing, 2016, 8(8):639.
- [15] Zhao H, Gao G, An W, et al. Timescale differences between SC– PDSI and SPEI for drought monitoring in China [J]. Physics & Chemistry of the Earth Parts A/b/c, 2015,102(12):45-48.
- [16] Herrera D, Ault T. Insights from a New High-Resolution Drought Atlas for the Caribbean Spanning 1950–2016[J]. Journal of Climate, 2017, 30(19):7801-7825.
- [17] Condorelli G E, Maccaferri M, Newcomb M, et al. Comparative aerial and ground based high throughput Phenotyping for the genetic dissection of NDVI as a proxy for drought adaptive traits in durum wheat [J]. Frontiers in Plant Science, 2018,9(7):893-902.
- [18] 周玉良,袁潇晨,周平,等.基于地下水埋深的区域干旱频率分析研究[J].水利学报,2012,39(9):1075-1083.
- [19] 闫桂霞, 陆桂华, 吴志勇, 等. 基于 PDSI 和 SPI 的综合气象干旱 指数研究[J]. 水利水电技术, 2009, 40(4):10-13.
- [20] 任怡,王义民,畅建霞,等.陕西省水资源供求指数和综合干旱指数及其时空分布[J].自然资源学报,2017,32(1):137-151.
- [21] Qin Y, Yang D, Lei H, et al. Comparative analysis of drought based on precipitation and soil moisture indices in Haihe basin of North China during the period of 1960 - 2010[J]. Journal of Hydrology, 2015, 526(10):55-67.
- [22] Zhang Q, Li Q, Singh V P, et al. Nonparametricintegrated agrometeorological drought monitoring: Model development and application [J]. Journal of Geophysical Research Atmospheres, 2018, 123(1): 78-88.
- [23] Bloomfield J P, Marchant B P. Analysis of groundwater drought building on the standardized precipitation index approach[J]. Hydrology & Earth System Sciences, 2013, 17(12):4769-4787.
- [24] 康艳, 粟晓玲, 党永仁. 渠井双灌区水资源统一调控的管理机制研究[J]. 节水灌溉, 2016,4(7):52-55.
- [25] 刘燕,朱红艳. 泾惠渠灌区水环境劣变特征及地下水调蓄能力分析[J]. 农业工程学报, 2011, 27(6):19-24.
- [26] 王东, 张勃, 安美玲, 等. 基于 SPEI 的西南地区近 53a 干旱时空 特征分析[J]. 自然资源学报, 2014, 29(6):1003-1016.
- [27] 中国气象科学研究院,国家气象中心,中国气象局预测减灾司 (GB/T20481-2006).气象干旱等级[S].北京:中国标准出版 社,2006.
- [28] 陕西省地质环境监测总站.陕西省地下水监测统计年鉴[M]. 武 汉:中国地质大学出版社,2017:5-75.
- [29] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method [J]. Computers & Operations Research, 1995, 22(7):763-770.
- [30] Kendall MG. Rankcorrelation measures [M]. London: Charles Griffin, 1975, 23(1):254-271.
- [31] Wang Y, Zhang T, Chen X, et al. Spatial and temporal characteristics of droughts in Luanhe River basin, China[J]. Theoretical & Applied Climatology, 2017, 131(2):1-17.
- [32] Zeleňáková M, Vido J, Portela M, et al. Precipitation trends over Slovakia in the period 1981 - 2013[J]. Water, 2017, 9(12):922.