文章编号:1000-7601(2019)05-0226-09

doi:10.7606/j.issn.1000-7601.2019.05.33

# 青藏高原草地降水利用效率时空动态 及对气候变化的响应

同琳静,刘洋洋,王 倩,李晓宇,李建龙

(南京大学生命科学学院生态学系,江苏南京 210093)

摘 要:本研究利用 CASA (Carnegie-Ames-Stanford Approach) 模型模拟了 2000—2013 年青藏高原草地净植被 生产力(Net Primary Production, NPP),结合实测数据、气象数据和土地覆被数据计算了草地降水利用效率(PUE),探 究其时空分布特征,以及不同草地类型 PUE 及其对气候变化的响应。结果表明:青藏高原草地 PUE 在研究年限内 呈现波动增加趋势,增加速率为每年 0.0035 g·m<sup>-2</sup>·mm<sup>-1</sup>,14 a 的平均值为 0.38 g·m<sup>-2</sup>·mm<sup>-1</sup>。PUE 的空间分布 具有明显的异质性,呈现东部高、中西部低的基本格局。PUE 分布在 0.2~0.4 g·m<sup>-2</sup>·mm<sup>-1</sup>之间的比例最大,占青 藏高原总面积的 55.63%,呈减少趋势的区域主要分布在青藏高原的北部和西部,以及东部的边界地区,呈增加趋势 的地区集中在研究区的中部和南部。研究年限内 PUE 的变异系数分布在 0.07~0.85 之间,变化稳定的区域所占面 积最大,为总面积的 43.43%,主要分布在唐古拉山脉和横断山脉附近。不同草地类型间 PUE 均值存在差异,具体表 现为:草甸(1.06 g·m<sup>-2</sup>·mm<sup>-1</sup>)>坡面草地(0.80 g·m<sup>-2</sup>·mm<sup>-1</sup>)>平原草地(0.30 g·m<sup>-2</sup>·mm<sup>-1</sup>)>高山与亚高山草 甸(0.29 g·m<sup>-2</sup>·mm<sup>-1</sup>)>荒漠草地(0.23 g·m<sup>-2</sup>·mm<sup>-1</sup>)>高山与亚高山草地(0.094 g·m<sup>-2</sup>·mm<sup>-1</sup>)。总体上,青藏 高原草地 PUE 与降水成负相关关系,而与气温呈正相关,PUE 的变化对降水响应更加敏感。

关键词:降水利用效率;时空动态;草地;青藏高原;气候变化;CASA 模型

中图分类号:S161.6 文献标志码:A

# Spatial-temporal dynamics of precipitation use efficiency in grassland and its relationship with climate changes on Qinghai-Tibet Plateau

TONG Lin-jing, LIU Yang-yang, WANG Qian, LI Xiao-yu, LI Jian-long

(Department of Ecology, School of Life Science, Nanjing University, Nanjing, Jiangsu 210093, China)

Abstract: In this study, the Carnegie-Ames-Stanford Approach model was used to simulate the *NPP* of the Qinghai-Tibet Plateau from 2000 to 2013, *PUE* was calculated as the ratio of *NPP* to annual precipitation. Based on the measured data, meteorological data and land cover data, temporal and spatial distribution characteristics of *PUE*, *PUE* of different grassland type, and its response to climate change were also explored. The results showed: The *PUE* of the Qinghai-Tibet Plateau showed an increasing trend with fluctuation, with an annual increase rate of 0.0035 g  $\cdot$  m<sup>-2</sup>  $\cdot$  mm<sup>-1</sup>, and the average value of 14 a was 0.38 g  $\cdot$  m<sup>-2</sup>  $\cdot$  mm<sup>-1</sup>. The spatial distribution of *PUE* had obvious heterogeneity, and basically showed a decreasing pattern from the east to west. The grassland *PUE* mainly distributed between 0.2 and 0.4 g  $\cdot$  m<sup>-2</sup>  $\cdot$  mm<sup>-1</sup>, accounting for 55.63% of the total area of the Qinghai-Tibet Plateau, as well as the eastern border area. The regions showing increasing trend concentrated in the central and southern parts. The variation coefficient of *PUE* was between 0.07 and 0.85. The area with stable trend accounted for the largest area(43.43% of the total area), which mainly distributed in the Tanggula Mountains and Hengduan Mountains. The average *PUE* values of different grassland followed the order of:

收稿日期:2018-10-24 修回日期:2019-08-20

基金项目:国家重点研发计划项目(2018YFD0800201);国家重点基础研究发展计划(973 计划:2010CB950702);国际 APN 全球变化项目 (ARCP2015-03CMY-Li)

作者简介:同琳静(1995-),女,陕西渭南人,硕士研究生,研究方向为生态遥感及陆地生态系统碳循环。E-mail:TLJ1654@163.com 通信作者:李建龙(1962-),男,长春市人,教授,博导,主要从事全球变化及陆地生态系统碳循环研究。Email: lijianlongnju@163.com

meadow(1.06 g · m<sup>-2</sup> · mm<sup>-1</sup>)>slope grassland(0.80 g · m<sup>-2</sup> · mm<sup>-1</sup>)>plain grassland(0.30 g · m<sup>-2</sup> · mm<sup>-1</sup>)>alpine and sub alpine meadow(0.29 g · m<sup>-2</sup> · mm<sup>-1</sup>)>dessert grassland(0.23 g · m<sup>-2</sup> · mm<sup>-1</sup>)>alpine and sub alpine grassland(0.094 g · m<sup>-2</sup> · mm<sup>-1</sup>). The grassland *PUE* was negatively correlated with precipitation but positively correlated with temperature. It was more responsive to precipitation.

Keywords: precipitation use efficiency; spatiotemporal dynamics; grassland; Qinghai-Tibet Plateau; climate change; Carnegie-Ames-Stanford Approach model

在全球背景下,气候变暖及降水格局的改变已 逐渐成为人类所关注的焦点<sup>[1-3]</sup>。全球 45%的陆地 面积属于干旱、半干旱地区,降水对于干旱、半干旱 陆地生态系统水分供给、生态系统结构和功能起着 关键作用<sup>[4]</sup>。降水利用效率(*PUE*)的概念是在水 分利用率(Water Use Efficiency, *WUE*)的基础上提 出的,*WUE* 指植物消耗单位水分所固定的干物质的 量,最初主要用于研究农作物的生理水平,而 *PUE* 定义为 *NPP* 与年降水的比值。*PUE* 是表征生态系 统碳水循环的综合性指标,同时能够预测全球气候 变化对生态系统所造成的影响<sup>[5-6]</sup>。

近年来,众多学者已对不同区域尺度 PUE 的时 空分布特征及其影响因素进行探究。Hu 等<sup>[6]</sup> 对我 国 4500 km 的草地样带的 PUE 进行了调查,研究得 出植被 PUE 不仅与降水存在较强的相关性,同时与 叶面积指数(LAI)和植被覆盖度(FVC)存在线性关 系,表明除气候条件外,植被的生物学特性也是 PUE 的影响因素。Bai 等<sup>[5]</sup> 基于 21 个站点的实测 数据,探究长时间序列的内蒙古草地 PUE 变化规 律,发现 PUE 对降水变化的响应在不同研究区域及 植被类型间存在差异,叶辉等<sup>[7]</sup>在对青藏高原 PUE 影响因素分析中也得到同样结论。穆少杰等<sup>[8]</sup> 通 过研究内蒙古不同降水梯度上的植被 PUE,发现在 不同的降水区间内,气温、降水与植被 PUE 之间的 关系存在较大差别。

青藏高原作为独立的地理单位,具有从湿润到 干旱、从热带到寒带等多样的气候及生态系统类型,是相应区域和全球气候变化的敏感地带,因其 特殊性引起了国内外学者的关注。草地是青藏高 原的主要植被类型之一,研究该区域草地 PUE 及其 对气候变化的响应对于草地保护、区域水土保持和 水源涵养具有重要意义。仇洁等<sup>[9]</sup> 对青藏高原植 被 PUE 进行探究,发现 PUE 呈现东部高、中西部低 的空间分布格局,且 PUE 受到植被类型和海拔的综 合影响。Yang 等<sup>[10]</sup>比较了不同草地类型 PUE,发 现青藏高原草地 PUE 低于全球草地 PUE 的均值。 尽管目前已有部分研究基础.但草地 PUE 对气候变 化的响应尚未完全明确。鉴于此,本研究以 2000— 2013 年为例,利用 CASA 模型,模拟了青藏高原草 地 NPP,并结合降水数据估算草地的 PUE 值,从区 域尺度探究 PUE 时空动态及其对气候变化的响应 机制,本研究结论对于青藏高原生态安全屏障建 设,深入了解高寒地区植被生产力的形成具有重要 意义,同时可为全球草地碳水循环对气候变化的响 应研究提供参考依据。

# 1 材料与方法

## 1.1 研究区概况

青藏高原(25°N—40°N,74°E—104°E)平均海 拔4500m,面积达2.5724×10<sup>6</sup>km<sup>2</sup>,占全国陆地总 面积的26.8%,是中国面积最大、世界上海拔最高的 高原。其位于我国西南部,地势上呈现西北高、东 南低的基本格局,在我国境内南起喜马拉雅山脉, 北至昆仑山-祁连山北侧,西起帕米尔高原,东至横 断山脉。青藏高原地势较高,气候寒冷,太阳辐射 较强。气温和降水呈现从东南至西北的递减趋势, 气温随纬度和海拔的增加出现降低,日较差较大。 全年干湿季分明,60%~70%降水集中在5—9月,属 于我国西部和西南部的高寒干旱气候区<sup>[11]</sup>。

## 1.2 数据来源

1.2.1 NDVI 数据 NDVI 采用美国航天局(NASA) 提供的 EOS/MODIS NDVI 数据,下载网址为: http://edcimswww.cr.usgs.gov/pub/imswelcome/。 本研究选择其中 2000—2013 年的 MOD13A1 产品, 该数据集的空间分辨率为 500 m,时间分辨率为 16 d。使用 MRT(MODIS Reprojection Tools)工具将从 HDF 格式转换成 Tiff 格式,并将 SIN 地图投影转换 成 WGS84/Albers Equal Area Conic 投影,之后进行 图像的拼接与重采样。采用最大合成法(Maximum Value Composite, MVC)对 16 d 的 MODIS-NDVI 数 据进行合成,得到月 NDVI 数据集,利用青藏高原边 界进行裁剪得到青藏高原 2000—2013 年逐月的 NDVI 栅格影像<sup>[8]</sup>。

1.2.2 气象数据 由中国气象数据网(http://cdc.

cma.gov.cn)下载全国 720 个站点的 2000—2013 年 月平均气温与降水数据,并通过 120 个辐射站点获 取全国月太阳总辐射数据。采用反距离权重法(Inverse Distance Weighted, IDW)进行气象数据的空间 插值,获得 2000—2013 年全国月平均气温、月平均 降水、月太阳总辐射的栅格数据集,利用青藏高原 边界进行数据掩膜,得到青藏高原逐月的气象数 据,该数据与 NDVI 数据采用统一的空间分辨率和 投影方式<sup>[9]</sup>。

1.2.3 土地覆盖数据 土地覆盖数据来自 GLC2000(Global Land Cover 2000)数据集中的中国 区域子集,该数据类型的分辨率为1km,分类精度 相比于 MODIS 和 IGBP 土地分类数据较高,草地分 类精度可达 66.95%<sup>[12]</sup>。在该数据中,青藏高原草 地被分为6类,分别为高山与亚高山草地、高山与亚 高山草甸、沙漠草地、草甸、平原草地和坡面草地<sup>[13]</sup>。 青藏高原不同草地类型分布见图 1(见 230 页)。

## 1.3 研究方法

1.3.1 草地 NPP 的估算 NPP 很难在全球或区域 尺度上进行测量,因此各国学者已根据研究尺度、 数据来源和研究基础建立了不同的植被 NPP 估算 模型,其中主要包括过程模型、参数模型和统计模 型<sup>[14]</sup>。CASA 是基于光合作用效率提出的过程模 型,该模型中主要涉及植物吸收的有效辐射(APAR) 和光能利用率(ε)两个变量,其计算方法如下:

 $NPP(x,t) = APAR(x,t) \times \varepsilon(x,t)$ (1) 式中, NPP(x,t)、APAR(x,t) 和  $\varepsilon(x,t)$  分别表示 t 月份像元 x 内的植被 NPP(g·m<sup>-2</sup>)、吸收的光合有 效辐射(MJ·m<sup>-2</sup>) 及光能转换率(g·MJ<sup>-1</sup>)<sup>[15]</sup>。

$$APAR(x,t) = SOL(x,t) \times FPAR(x,t) \times 0.5$$
(2)

式中,SOL(x, t) 表示 t 月份像元 x 内的太阳总辐射 量( $MJ \cdot m^{-2}$ ),常数 0.5 代表植被所利用有效辐射 (0.4 ~ 0.7  $\mu$ m)占太阳总辐射的比例,FPAR(x, t)则表示植被对入射光合有效辐射(PAR)的吸收 比例<sup>[14]</sup>。

$$\varepsilon(x,t) = T_{\varepsilon_1}(x,t) \times T_{\varepsilon_2}(x,t) \times W_{\varepsilon}(x,t) \times \varepsilon_{\max}$$
(3)

式中, $T_{\varepsilon^1}(x,t)$ 和 $T_{\varepsilon^2}(x,t)$ 分别为低温和高温对光 能利用率造成的影响, $W_{\varepsilon}(x,t)$ 为水分条件对其的 影响, $\varepsilon_{max}$ 代表理想状态下光能转化率。传统的 CASA模型中应用的 $\varepsilon_{max}$ 的值一般为0.389 g·MJ<sup>-1</sup>, 在实际研究中会根据研究区内的植被状况对该参 数值进行修正。本研究采用朱文泉等<sup>[16]</sup> 估算模拟 的全国不同植被的最大光能利用率,其中草地的 $\varepsilon_{max}$ 为0.542 g·MJ<sup>-1</sup>。此外,*NPP*估算公式中的*FPAR*(x, t)、 $T_{e1}(x,t)$ 和 $T_{e2}(x,t)$ 的计算可参照文献<sup>[17]</sup>。 1.3.2 *PUE*的计算 因数据来源与研究方法的差 异,不同方法计算的*PUE*存在差异。但大部分学者 都采用净初级生产力(*NPP*)与年降水量(*PPT*)的 比值来定义*PUE*<sup>[5]</sup>,计算公式为:

$$PUE = \frac{NPP}{PPT} \tag{4}$$

式中,NPP采用 CASA 模型的模拟结果,PPT 通过气象数据空间插值得到。

1.3.3 趋势分析 采用一元线性回归法分析青藏 高原 PUE 及气温降水的变化趋势及变化速率<sup>[18]</sup>, 计算公式为:

$$slope = \frac{n \times \sum_{i=1}^{n} (i \times Var_i) - (\sum_{i=1}^{n} i) (\sum_{n=1}^{n} Var_i)}{n \times (\sum_{i=1}^{n} i^2) - (\sum_{i=1}^{n} i)^2}$$
(5)

式中,*slope* 表示变化斜率,*n* 表示研究年限(14 a),*i* 代表第*i*年,*Var<sub>i</sub>*代表第*i*年的变化量。若*slope* > 0, 表示变量呈现增加趋势,反之,则表示变量呈现减 少趋势。

对植被 NPP 进行显著性检验(F 检验),可知变 化趋势可信程度高低。计算公式为:

$$F = U \times \frac{n-2}{Q} \tag{6}$$

$$U = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2$$
(7)

$$Q = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (8)

式中,*U*为误差平方和,*Q*为回归平方和, $\hat{y}_i$ 为其回归 值, $\bar{y}$ 代表 14 a 植被 *NPP* 平均值, $y_i$  表示第 *i* 年的植 被 *NPP*,*n* 表示研究年数 14 a。通过 *F* 检验将植被 *NPP* 的变化趋势划分为以下 6 个等级:极显著增加 (*slope* > 0,*p* < 0.01),显著增加(*slope* > 0,0.01 < *p* < 0.05),不显著增加(*slope* > 0,*p* > 0.05);不显著 减少(*slope* < 0,*p* > 0.05),显著减少(*slope* < 0,*p* < 0.01)。 1.3.4 稳定性分析 变异系数可反映观测值的变 异程度,本研究用以分析草地 *PUE* 变化的稳定 性<sup>[19]</sup>,公式具体如下:

$$Cv = \frac{\sqrt{\frac{\sum_{i=1}^{n} (PUE_i - \overline{PUE})^2}{n-1}}}{\frac{n-1}{\overline{PUE}}}$$
(9)

式中, Cv表示变异系数,  $PUE_i$ 代表第*i*年的 PUE值, *n*为研究年限(14 a),  $\overline{PUE}$ 为 PUE的平均值。根据 变异系数的大小可将其细分为4个等级:很不稳定 (Cv > 0.3), 不稳定( $0.2 < Cv \le 0.3$ ), 稳定( $0.1 < Cv \le 0.2$ ), 非常稳定( $Cv \le 0.1$ )。

1.3.5 相关性分析 草地 PUE 与气象因子的相关 性可以采用基于像元的空间分析法分析<sup>[20]</sup>,计算 PUE 与气温降水相关性的公式如下:

$$r_{xy} = \frac{n \times \sum_{i=1}^{n} (x_i \times y_i) - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{\sqrt{n \times \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \sqrt{n \times \sum_{i=1}^{n} y_i^2 - (\sum_{i=1}^{n} y_i)^2}}$$
(10)

式中, $r_{xy}$ 表示草地PUE与气象因子的相关系数,n表示研究年限(14 a), $x_i$ 为第i年的PUE, $y_i$ 为第i年的平均气温和降水。

## 1.4 模型验证

因实测 NPP 获取较难,所以一般通过生物量换 算的 NPP 替代实测数据来进行模型验证<sup>[21]</sup>。本研 究实测的 NPP 数据来自 2012 年与 2013 年在研究 区内选取的 63 个样点数据,样地大小为 10 m×10 m,样方大小为 1 m×1 m,每个样地选取 5 个重复。 对样方内草地地上部分进行齐地刈割,然后放入到 70℃烘箱烘干至恒重。根据根冠比和地上部分重量 进行估算,取碳利用效率 0.475,最终得到实测 NPP <sup>[14]</sup>。实测数据和模拟数据进行比较来验证模型的 精度,经计算发现两者具有较强的相关性(*R*<sup>2</sup> = 0.69,*P*<0.01),说明 CASA 模型模拟的青藏高原的 NPP 数据精度较高,可用于该区 NPP 的估算(图 2)。

# 2 结果分析

## 2.1 青藏高原草地 PUE 的时空动态

2.1.1 *PUE* 年际变化特征 对青藏高原 2000—2013 年草地 *PUE* 进行统计分析可得,其值在 2002 年出现最小值 0.29 g·m<sup>-2</sup>·mm<sup>-1</sup>,2006 年达到最大值 0.41 g·m<sup>-2</sup>·mm<sup>-1</sup>,14 a 的平均值为0.38 g·m<sup>-2</sup>·mm<sup>-1</sup>。如图 3 所示,青藏高原草地 *PUE* 总体呈现波动增加趋势,研究年限内变化速率为每年 0.0035 g·m<sup>-2</sup>·mm<sup>-1</sup>,变化百分率为 7.95%,线性增

长趋势未达到显著性水平(P>0.05)。



#### 图 2 青藏高原草地 NPP 实测值和模拟值的比较

Fig.2 Comparisons between observed and simulated net primary productivity (*NPP*) on Qinghai-Tibet Plateau



Fig.3 Dynamics of annual grassland *PUE* on Qinghai–Tibet Plateau

2.1.2 PUE 空间分布特征及动态变化 图 4 为 青 藏高原草地 2000—2013 年草地 PUE 均值的空间分 布特征,总体上呈现东部高、中西部低的基本格局。 具体分布状况为:草地 PUE 小于 0.2 g · m<sup>-2</sup> · mm<sup>-1</sup> 的区域在青藏高原分布较少,所占总面积的比例仅 为 0.01%。草地 PUE 在 0.2~0.4 g·m<sup>-2</sup>·mm<sup>-1</sup>之 间的区域占青藏高原总面积的55.63%,主要集中在 青藏高原北部的青海湖流域、柴达木山地、昆仑北 翼山地、昆仑高寒地区,西部的阿里山地区,和南部 的藏南山地,另在其余地区也有零星分布,荒漠草 地和高山与亚高山草地为该区的主要草地类型。 草地 PUE 在 0.4~0.8 g·m<sup>-2</sup>·mm<sup>-1</sup>之间的区域出 现在中部的青南高寒地区、果洛那曲高寒地区、川 西藏东山地及东喜马拉雅山脉南翼地区,高山与亚 高山草甸在该区分布较广。PUE大于 0.8 g·m<sup>-2</sup>· mm<sup>-1</sup>的区域主要集中在青藏高原的东部,面积达到 总面积的15.24%,主要草地类型为草甸和高山与亚 高山草甸(表1)。

青藏高原草地 PUE 的变化率分布在年均 -0.259~0.0863 g·m<sup>-2</sup>·mm<sup>-1</sup>之间,呈减少趋势的 区域主要集中在研究区北部和西部,以及东部的边 界地区,呈增加趋势的地区出现在该区的中部和南 部(图 5a)。对 PUE 的变化趋势进行显著性检验可 得,PUE 极显著和显著减少的区域较少,分别占青 藏高原总面积的 0.72%和 0.38%,主要分布在帕米尔











高原地区。PUE 未显著变化区域分布较广,面积达 到研究区总面积的 80.79%,在柴达木山地、青东祁 连山地、果洛那曲高寒地区、川西藏东山地、羌塘高 寒地区、阿里山地区、藏南山地、及东喜马拉雅山脉 南翼分布较多。草地 PUE 显著和极显著增加的区 域主要集中在唐古拉山脉和巴颜喀拉山脉附近,两 种类型分别占青藏高原总面积的 13.24%、4.87% (图 5b,表 2)。

2.1.3 草地 PUE 变化稳定性特征 2000—2013 年 青藏高原草地 PUE 的变异系数分布在 0.07~0.85 之间,根据变异值的高低将其划分为 4 个类别(表 3),具体分析可知,草地 PUE 变化很不稳定的区域 主要集中在帕米尔高原、昆仑山脉西侧、羌塘高寒 地区、喜马拉雅山脉的部分地区,该类型面积占青 藏高原总面积的 15.37%。不稳定变化区域在青藏 高原的分布比例为 40.20%,主要集中在青东祁连山 地、果洛那曲高寒地区、川西藏东山地和喜马拉雅 山脉的部分地区。变化稳定的区域在该区所占面 积最大,为总面积的 43.43%,主要在唐古拉山脉和 横断山脉附近分布。草地 PUE 变化很稳定的面积仅 为该区 1%,在研究区内呈零星分布(图 6)。

表1 青藏高原草地平均 PUE 分级

 Table 1
 Classification of average grassland

 PUE on Qinghai–Tibet Plateau

| 草地 PUE 分级<br>Class of grassland PUE | 所占百分比/%<br>Percentage |
|-------------------------------------|-----------------------|
| < 0.2                               | 0.01                  |
| 0.2-0.4                             | 55.63                 |
| 0.4-0.6                             | 14.82                 |
| 0.6-0.8                             | 14.30                 |
| 0.8-1.0                             | 10.53                 |
| >1.0                                | 4.71                  |
|                                     |                       |





Fig.5 Variation trends of grassland PUE (a) and its significant test (b) on Qinghai-Tibet Plateau

#### 表 2 草地 PUE 变化所占面积百分比统计

| Tabl | le 2 | Percenta | ge statistics | of . | PUE | variation | in | grassland | area |
|------|------|----------|---------------|------|-----|-----------|----|-----------|------|
|------|------|----------|---------------|------|-----|-----------|----|-----------|------|

| -               |                                                                                                |                                            |                    |
|-----------------|------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------|
|                 | 斜率及显著性                                                                                         | 变化趋势                                       | 所占面积百分比/%          |
|                 | Slope and significa                                                                            | nce Trend                                  | Percentage of area |
| 减小              | Slope<0; $P < 0.01$                                                                            | 极显著减少<br>Extremely significan<br>reduction | t 0.72             |
| 吸少<br>Reduction | Slope<0; $0.01 < P < 0.05$                                                                     | 显著减少<br>Significant reduction              | 0.38               |
|                 | Slope<0;<br>P>0.05                                                                             | 未显著减少<br>No significant reducti            | 11.83              |
|                 | Slope>0;<br>P>0.05                                                                             | 未显著增加<br>No significant increas            | 68.96              |
| 增加<br>Increase  | Slope>0;<br>0.01 <p<0.05< td=""><td>显著增加<br/>Significant increase</td><td>13.24</td></p<0.05<> | 显著增加<br>Significant increase               | 13.24              |
|                 | Slope>0; $P < 0.01$                                                                            | 极显著增加<br>Extremely significan<br>increase  | t 4.87             |



图 6 青藏高原草地 PUE 变异系数的空间分布 Fig.6 Spatial distribution of PUE variation coefficient of grassland in Qinghai-Tibet Plateau

#### 表 3 青藏高原草地 PUE 的变异系数统计

Table 3 Statistic of variation coefficients of grassland

| FUE on Unghai Tibel Flateau | PUE or | ı Qinghai | -Tibet | Plateau |
|-----------------------------|--------|-----------|--------|---------|
|-----------------------------|--------|-----------|--------|---------|

| PUE 变异系数                     | 稳定程度               | 所占百分比/%    |
|------------------------------|--------------------|------------|
| Variation coefficient of PUE | Stability          | Percentage |
| <i>Cv</i> >0.3               | 很不稳定 Very unstable | 15.37      |
| $0.2 < Cv \le 0.3$           | 不稳定 Unstable       | 40.20      |
| $0.1 < Cv \le 0.2$           | 稳定 Stable          | 43.43      |
| $Cv \leq 0.1$                | 非常稳定 Very stable   | 1.00       |

2.1.4 不同草地类型 PUE 变化趋势 由图7可知. 青藏高原不同草地类型的 PUE 值及变化趋势存在 差异。不同草地类型的 PUE 均值表现为:草甸 (1.06 g · m<sup>-2</sup> · mm<sup>-1</sup>)>坡面草地(0.80 g · m<sup>-2</sup> · mm<sup>-1</sup>)>平原草地(0.30 g·m<sup>-2</sup>·mm<sup>-1</sup>)>高山与亚 高山草甸(0.29 g·m<sup>-2</sup>·mm<sup>-1</sup>)>荒漠草地(0.23 g ・m<sup>-2</sup>・mm<sup>-1</sup>)>高山与亚高山草地(0.094 g・m<sup>-2</sup>・ mm<sup>-1</sup>)。对每种草地变化趋势进行统计分析,荒漠 草地 ( $\gamma = 0.0018x - 3.48$ )、草甸 ( $\gamma = 0.0016x +$ 4.2257)、坡面草地(y=0.015x-29.02)的 PUE 呈现 波动增加趋势,高山与亚高山草地( $\gamma = -0.0032x +$ 6.46)、高山与亚高山草甸(y=-0.0021x+5.43)、平 原草地(y=-0.0016x+4.23)的 PUE 呈现波动减少 趋势,但变化趋势都未通过显著性水平检验。表4 对每种草地类型的显著性变化的面积进行了统计, 其中每种草地类型的 PUE 都为无显著变化面积占 草地总面积的比例最大,另外,PUE 呈极显著或显 著增加的区域面积均大于极显著减少和显著减少 的面积,坡面草地无极显著和显著减少的区域。







| 表 4 | 不同草地类型 PUE 变化显著性统计 |  |
|-----|--------------------|--|
|-----|--------------------|--|

| Table 4 Statistics of significance test of PUE variations for different grassland types |                         |                         |              |                           |                                             |                                                |  |  |
|-----------------------------------------------------------------------------------------|-------------------------|-------------------------|--------------|---------------------------|---------------------------------------------|------------------------------------------------|--|--|
| 百分比/%<br>Percentage                                                                     | 坡面草地<br>Slope grassland | 平原草地<br>Plain grassland | 草甸<br>Meadow | 荒漠草地<br>Dessert grassland | 高山与亚高山草甸<br>Alpine and sub<br>alpine meadow | 高山与亚高山草地<br>Alpine and sub<br>alpine grassland |  |  |
| 极显著减少<br>Extremely significant reduction                                                | 0.00                    | 1.24                    | 0.13         | 1.01                      | 0.26                                        | 0.92                                           |  |  |
| 显著减少<br>Significant reduction                                                           | 0.00                    | 0.58                    | 0.13         | 0.45                      | 0.14                                        | 0.48                                           |  |  |
| 不显著减少<br>No significant reduction                                                       | 2.94                    | 9.37                    | 56.22        | 9.29                      | 7.78                                        | 7.87                                           |  |  |
| 不显著增加<br>No significant increase                                                        | 82.36                   | 74.22                   | 37.02        | 81.19                     | 62.21                                       | 83.73                                          |  |  |
| 显著增加<br>Significant increase                                                            | 11.76                   | 9.78                    | 4.01         | 7.50                      | 21.53                                       | 5.84                                           |  |  |
| 极显著增加<br>Extremely significant increase                                                 | 2.94                    | 4.81                    | 2.49         | 0.56                      | 8.08                                        | 1.16                                           |  |  |

#### 2.2 青藏高原草地 PUE 与气象因素的关系

2.2.1 青藏高原气温与降水的时空变化 图 8 为 青藏高原气温降水的年际变化和变化速率。气温 减少的区域在该区分布较广,气温增加区域集中在 研究区的中南部,其变化率在年均-0.27~0.073 ℃ 之间波动(图 8a)。年际变化上,气温呈现波动减小 趋势,年均变化速率为-0.0044℃,但变化趋势不显 著(P>0.05)。14 a 的平均气温为-0.84℃,2009 年 达到最大值-0.47℃,2008 出现最小值-1.12℃(图 8c)。年均降水的变化率分布在-12.96~13.54 mm 之间,降水变化率较高区域主要分布在青藏高原的 东部地区,变化率较低地区主要分布在中部和南部 (图 8b)。时间变化上,青藏高原降水呈现波动降低 趋势,年降水的变化速率为-0.59 mm,变化趋势未



图 8 青藏高原气温(a)、降水变化速率(b)及二者的年际变化(c) Fig.8 Temperature (a), precipitation (b) and their interannual variation (c) on Qinghai-Tibet Plateau

达到显著性水平(P>0.05)。降水量 2002 年达到最 大值 465.22 mm,2009 年出现最小值 385.73 mm,14 a 的平均降水量为 429.89 mm(图 8c)。

2.2.2 PUE 与气温、降水的相关性 本研究为分析 气候状况对草地 PUE 的影响,对 2000-2013 年的 草地 PUE 像元与气温、降水像元进行相关性分析并 对相关系数空间化显示,结果如图 9a 所示,草地 PUE 与气温呈正相关的面积占该区总草地面积的 70.15%,而呈负相关的比例为 29.85%,总体上可认 为青藏高原地区草地 PUE 与气温呈正相关。草地 PUE 与气温成负相关的区域主要包括祁连山脉、羌 塘高寒地区和藏南山地,而正相关关系中,PUE 与 气温的相关性系数分布在 0~0.4 之间的区域面积 最大,主要集中在昆仑山脉和横断山脉附近。相关 性在 0.8~1.0 之间的面积最小,所占比例不足 1%, 其余呈正相关的区域还分布在唐古拉山脉和喜马 拉雅山脉附近。分析每种草地类型与气温的相关 性,坡面草地、平原草地、高山与亚高山草地与草地 呈正相关,而草甸、荒漠草地、高山与亚高山草甸与 气温呈负相关关系,除草甸(P<0.05)外,其他草地 类型与气温的相关性均不显著(表5)。



Fig.9 The correlation coefficient between grassland *PUE* and temperature (a), precipitation (b)

| Table 5 Correl                                   | ation coefficient       | between differe         | nt grassiano | d PUL and tempe           | rature and precipitati                      | lon                                            |
|--------------------------------------------------|-------------------------|-------------------------|--------------|---------------------------|---------------------------------------------|------------------------------------------------|
| 相关系数<br>Correlation coefficient                  | 坡面草地<br>Slope grassland | 平原草地<br>Plain grassland | 草甸<br>Meadow | 荒漠草地<br>Dessert grassland | 高山与亚高山草甸<br>Alpine and sub<br>alpine meadow | 高山与亚高山草地<br>Alpine and sub<br>alpine grassland |
| 草地 PUE-气温<br>Grassland PUE between temperature   | 0.08                    | 0.49                    | -0.19*       | -0.20                     | -0.58                                       | 0.52                                           |
| 草地 PUE-降水<br>Grassland PUE between precipitation | -0.33                   | -0.50                   | -0.36        | -0.51                     | 0.20                                        | -0.39                                          |

表 5 不同草地 PUE 与气温和降水的相关性系数 5 Correlation coefficient between different grassland PUE and temperature and preci-

注:\*表示相关性达到 P<0.05 水平。

Note: \* indicates that the correlation was significant at P < 0.05.

草地 PUE 与降水成负相关所占的区域面积明显大于呈正相关的区域面积,则可知总体上青藏高原草地 PUE 与降水成负相关。具体分析可知,PUE 与降水成负相关的区域主要包括祁连山脉、昆仑山脉南侧、横断山脉、唐古拉山脉、以及喜马拉雅山脉。呈正相关的区域所占比例较少,其面积仅为青藏高原总草地面积的 2.04%,集中在冈底斯山脉、阿里山附近、喜玛拉雅南翼等部分地区(图 9b)。表 5 对不同草地类型与降水的相关性进行了统计,除高山与亚高山草甸外,荒漠草地、高山与亚高山草地、草甸、平原草地、坡面草地的 PUE 都与降水成负相关,但每种草地类型与降水的相关关系均未达到显著性水平(P>0.05)。

# 3 讨 论

探究区域尺度的 PUE 时空分布特征及气候响 应模式对于研究植被生产力过程具有重要意义,同 时也是研究生态系统碳水循环的重要指标。时间 上,青藏高原 PUE 呈现波动增加趋势(图 3),说明 我国青藏高原的草地生长状态正不断得到改善,这 可能与国家近年来实施的退耕还林、退耕还草,以 及草地保护措施有关[22-23]。空间上,青藏高原草地 PUE 呈现由东向西递减的趋势(图 4),这与前人研 究结果一致<sup>[7,9]</sup>。不同草地类型的 PUE 大小可能 与不同草地类型的生理学特征、群落结构、以及所 处的经纬度、土壤条件、地形地貌、气候条件和人类 活动等多种因素有关<sup>[24-25]</sup>。本研究中不同草地类 型的 PUE 间存在差异,其中草甸的 PUE 均值最高, 高山与亚高山草地 PUE 的均值最低。Hu 等<sup>[6]</sup>对青 藏高原和内蒙古高原 4 500 km 的草地样带 PUE 进 行研究,也同样得到草甸具有最高的 PUE,而高山 与亚高山草甸具有最低值。叶辉<sup>[7]</sup>和 Yang 等<sup>[10]</sup>研 究得到青藏高原地区高寒草甸的 PUE 最高,但高寒 荒漠的 PUE 最低,结果出现部分差异可能与数据来 源、研究方法和研究年限差异有关。

青藏高原草地 PUE 与气温呈正相关的面积占 总草地面积的 70.15%, 与降水呈负相关的比例为 97.96%,说明该区 PUE 与气温呈正相关,而与降水 成负相关, PUE 对降水更加敏感(图 9)。2000-2013 年青藏高原 PUE 呈现增加趋势,可能与降水 的减少,加上气温的调节作用有关。不同学者也得 到相似的结论,米兆荣等<sup>[26]</sup>从年降水利用率、生长 季降水利用率和牛长季水分利用率等3方面分析了 青藏高原高寒草地的水分利用率,研究得出随着降 水量的增加.3个指标的值都呈现降低趋势。 Humax 等<sup>[27]</sup>结合美国 14 个站点数据研究地上部净 初级生产力(ANPP)对降水量变化的响应,结果表 明随着年降水量的增加植被 PUE 会出现下降:穆少 杰等<sup>[8]</sup>对内蒙 2000—2010 年植被 PUE 进行研究得 到,大部分地区的植被 PUE 与降水量间存在正相关 关系,与气温的呈正相关的比例大于负相关。不同 研究结果存在差异,可能与不同研究区域植被 PUE 对水热组合的响应模式不同造成。造成本研究结 果的原因可能为,过多的降水会抑制草地进行光合 作用,日易形成地表径流,土壤中植物牛长所需的 营养元素会流失:另外,在土壤水分过度饱和的情 况下,土壤根系无氧呼吸作用会增强,土壤微生物 活动也会受到抑制,影响植物有机物的积累;高生 产潜力植被用于生长性和维持性呼吸的消耗较多, 众多因素的综合作用可能导致 PUE 降低。但部分 荒漠草地分布地区,草地 PUE 与降水呈正相关,可 能原因为降水是限制该区植物生长的主要因素,荒漠 草地一般具有较为发达的根系,能够利用土壤下层水 分,自身的水分利用率较高。且气孔导度较低,因此 消耗单位水量积累的有机物质较多(图1,图9)。

综上所述,草地 PUE 的影响因素众多,本研究 仅探究了其对气温和降水的响应,其他因素的作用 机制还需要进行进一步探究。但本研究结论对于 明确高寒植被生产力形成过程以及全球气候变化 的相应机制具有重要意义。

# 4 结 论

本研究基于遥感数据、实测数据、气象数据和 土地覆被数据研究了 2000—2013 年青藏高原的草 地 PUE,并探究其时空变化特征及其影响因素,主 要得到以下结论:

(1)时间上,青藏高原草地 PUE 呈现波动增加 趋势,年均增加速率 0.0035 g·m<sup>-2</sup>·mm<sup>-1</sup>,但线性 增长趋势未达到显著性水平。

(2) 青藏高原草地 PUE 空间分布具有明显的 异质性,基本呈现由东向西递减的分布格局。草地 PUE 呈减少趋势的区域主要分布在青藏高原北部 和西部,以及东部的边界地区,呈增加趋势的地区 集中在中部和南部。依据变异系数进行分析,草地 PUE 稳定变化的区域在该区所占面积最大,其主要 分布在唐古拉山脉和横断山脉附近。

(3)不同草地类型的 PUE 均值间存在差异,具体表现为:草甸>坡面草地>平原草地>高山与亚高 山草甸>荒漠草地>高山与亚高山草地。时间变化 上,每种草地类型的变化趋势均不显著。

(4)总体上,青藏高原草地 PUE 与降水呈负相 关关系,与气温呈正相关,草地 PUE 对降水响应更 加敏感,但相关性关系会随着区域气候格局及草地 类型的变化而变化。

## 参考文献:

- [1] 张静,任志远,张嘉琪. 汾河中下游土地生态系统固碳释氧动态测 评[J]. 干旱地区农业研究, 2018, 36(2): 242-249.
- [2] Cubasch U D, Wuebbles D, Chen D, et al. Introduction climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change [J]. Computational Geometry, 2013, 18(2):95-123.
- [3] 姚玉璧,杨金虎,王润元,等.黄河源地区植被净初级生产力对气候变化的响应[J].干旱地区农业研究,2012,30(1):246-252.
- [4] 同琳静,刘洋洋,王倩,等.西北植被净初级生产力时空变化及其 驱动因素[J].水土保持研究,2019,26(4):367-374.
- [5] Bai Y, Wu J, Xing Q, et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau [J]. Ecology, 2008, 89(8):2140-2153.
- [6] Hu Z, Yu G, Fan J, et al. Precipitation-use efficiency along a 4500 km grassland transect [J]. Global Ecology & Biogeography, 2010, 19 (6):842-851.
- [7] 叶辉, 王军邦, 黄玫, 等. 青藏高原植被降水利用效率的空间格局 及其对降水和气温的响应[J]. 植物生态学报, 2012, 36(12): 1237-1247.
- [8] 穆少杰,周可新,齐杨,等.内蒙古植被降水利用效率的时空格局

及其驱动因素[J]. 植物生态学报, 2014, 38(1):1-16.

- [9] 仇洁,张慧,沈渭寿.青藏高原1982—2007年植被降水利用效率空间格局特征分析[J].复旦学报(自然科学版),2014,53(1): 126-133.
- [10] Yang Y, Fang J, Fay P A, et al. Rain use efficiency across a precipitation gradient on the Tibetan Plateau [J]. Geophysical Research Letters, 2010, 37(15):78-82.
- [11] 孟梦,牛铮,马超,等.青藏高原 NDVI 变化趋势及其对气候的响应[J].水土保持研究, 2018, 25(3):360-372.
- [12] 李净,刘红兵,李龙,等.基于多源遥感数据集的近 30a 西北地区 植被动态变化研究[J].干旱区地理(汉文版),2016,39(2): 387-394.
- [13] Ran Y H, Li X, Lu L. Evaluation of four remote sensing based land cover products over China [J]. International Journal of Remote Sensing, 2010, 31(2):391-401.
- [14] 周伟, 牟凤云, 刚成诚, 等. 1982—2010 年中国草地净初级生产力 时空动态及其与气候因子的关系[J]. 生态学报, 2017, 37(13): 4335-4345.
- [15] 杨东辉,赵军,张智慧,等.近10年甘南牧区草地净初级生产力 变化研究[J].干旱地区农业研究,2011,29(1):257-263.
- [16] 朱文泉,陈云浩,徐丹,等.陆地植被净初级生产力计算模型研究进展[J].生态学杂志,2005,24(3):296-300.
- [17] 刘雪佳,赵杰,杜自强,等. 1993—2015 年中国草地净初级生产力 格局及其与水热因子的关系[J].水土保持通报,2018,38(1): 299-305.
- [18] 王钊,李登科. 2000—2015 年陕西植被净初级生产力时空分布特 征及其驱动因素[J]. 应用生态学报, 2018, 29(6):1876-1884.
- [19] 王芳, 汪左, 张运. 2000—2015 年安徽省植被净初级生产力时空 分布特征及其驱动因素[J]. 生态学报, 2018, 38(8):2754-2767.
- [20] 穆少杰,李建龙,周伟,等. 2001—2010 年内蒙古植被净初级生产 力的时空格局及其与气候的关系[J]. 生态学报,2013,33(12): 3752-3764.
- [21] Wang Z, Zhang Y, Yang Y, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai–Tibet Plateau, in China [J]. Ecological Informatics, 2016, 33:32-44.
- [22] 宋富强,杨改河,冯永忠.黄土高原不同生态类型区退耕还林 (草)综合效益评价指标体系构建研究[J].干旱地区农业研究, 2007,25(3):169-174.
- [23] 张镱锂, 祁威, 周才平, 等. 青藏高原高寒草地净初级生产力 (NPP)时空分异[J]. 地理学报, 2014, 68(2):1197-1211.
- [24] Lehouerou H N. Rain-Use Efficiency: a unifying concept in arid-Land ecology [J]. Journal of Arid Environments, 1984, 7(3):213-247.
- [25] Paruelo J M, Lauenroth W K, Burke I C, et al. Grassland precipitation-use efficiency varies across a resource gradient [J]. Ecosystems, 1999, 2(1):64-68.
- [26] 米兆荣,陈立同,张振华,等.基于年降水、生长季降水和生长季 蒸散的高寒草地水分利用效率[J].植物生态学报,2015,39(7): 649-660.
- [27] Huxman T E, Smith M D, Fay P A, et al. Convergence across biomes to a common rain-use efficiency [J]. Nature, 2004, 429 (6992): 651-654.