文章编号:1000-7601(2020)05-0064-07

doi:10.7606/j.issn.1000-7601.2020.05.10

白菜型冬油菜 NCED3 基因、 启动子的克隆及其表达分析

武军艳¹,马 骊¹,方 彦¹,张亚宏²,马学才¹, 刘丽君¹,牛早霞¹,李学才¹,李爱国³,孙万仓¹

(1. 甘肃农业大学农学院/甘肃省油菜工程技术研究中心,甘肃 兰州 730070;2. 甘肃天水市农业科学研究所,甘肃 天水 741001;3. 河北省农作物抗旱研究实验室,河北 衡水 053000)

摘 要:从2个不同抗寒性的冬油菜品种中克隆了 NCED3 基因及其启动子序列,并分析其在叶片和根中的表达,研究 NCED3 基因在冬油菜中的作用机理。结果表明, 陇油6号的 NCED3 基因开放阅读框(ORF)长度为1794 bp, 编码 597 个氨基酸,分子量65.74 kD, 理论等电点为5.81; 天油2号的 ORF 与其长度相同, 分子量为65.78 kD, 理论等电点为5.94。2个蛋白都是亲水蛋白, 具有疏水峰。根据预测, 启动子具有生物过程中常见的顺式作用元件如 CAAT-box 等、分生组织表达 CAT-box 相关的顺式作用元件、-30 TATA box 附近的核心启动子元件等, 还有 ABRE、TGA-element、CGTCA-motif、TGACG-element等激素响应元件, 此外, 还鉴定出低温响应元件(LTR)。2个品种启动子序列的相似度为99.38%, 只有1个不同的顺式作用元件, 即 circadian, 推测其与昼夜节律相关。低温、PEG及 ABA 处理 后 NCED3 在叶片和根中的表达均高于对照, 增加范围为0.07~6.48, 且均于8h达到峰值。与根系的表达特性相比, 胁 迫处理后叶片的基因表达均在2h显著升高, 天油2号的升高幅度(1.54~6.00)均大于陇油6号(0.04~1.95)。

关键词:NCED3 基因;白菜型冬油菜;抗寒性;启动子克隆;序列分析;胁迫;基因相对表达量

中图分类号:S565.4;Q785 文献标志码:A

Gene and promoter cloning and gene expression analysis of *NCED3* from winter rapeseed (*Brassica rapa* L.)

WU Junyan¹, MA Li¹, FANG Yan¹, ZHANG Yahong², MA Xuecai¹, LIU Lijun¹, NIU Zaoxia¹, LI Xuecai¹, LI Aiguo³, SUN Wancang¹

(1. College of Agronomy, Gansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Lanzhou, Gansu 730070, China;

2. Tianshui Institute of Agricultural Sciences, Tianshui, Gansu 741001, China;

3. Institute of Dry Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, Hebei 053500, China)

Abstract: For studying the role of *NCED3* gene in winter rapeseed (*Brassica rapa* L.), we cloned *NCED3* from two different cold-tolerant winter rapeseeds cultivars, aligned the sequences, and identified its expression in leaves and roots. Results showed that the open reading frame (ORF) of *NCED3* had 1 794 bp encoding 597 amino acids. *NCED3* from Longyou 6 had a calculated molecular mass of 65.74 kD and theoretical isoelectric point of 5.81 while it from Tianyou 2 was 65.78 kD and 5.94. The two proteins were both hydrophilic proteins with a hydrophobic peak. Compared with *NCED3* from Brassica napus, some bases changed and resulted in the changes of amino acids. Results showed that promoters had such hormone-responsive elements as ABRE, TGA-element, CGTCA-motif, and TGACG-element. In addition, low-temperature responsiveness element (LTR), defense and stress responsiveness

 收稿日期:2020-02-19
 修回日期:2020-08-03

 基金项目:甘肃省自然科学基金(17JR5RA149);国家现代农业产业技术体系(CARS-12);甘肃省重大专项(17ZD2NA016-4);甘肃省现代农业产业技术体系(GARS-TSZ-1)

 作者简介:武军艳(1981-),女,甘肃平川人,副教授,主要从事油菜的抗逆遗传育种研究。E-mail: wujuny@gsau.edu.cn

通信作者:孙万仓(1957-),男,甘肃会宁人,教授,主要从事油菜抗逆遗传育种研究。E-mail:18293121851 @ 163.com.en

expression in leaves significantly increased at 2 h after stress treatment, and the increase range in Tianyou 2 (1.54 \sim 6.00) was greater than that in Longyou 6 (0.04 \sim 1.95).

Keywords: NCED3 gene; winter rapeseed; cold resistance; promoter cloning; sequence analysis; stress; relative expression

白菜型冬油菜是一种新选育的强冬性油菜,可在 极端低温为-20℃~-32℃的地区种植^[1-2],它的成功 选育使得我国北方地区农田冬季具有了覆盖作物,为 北方耕作制度改革带来益处。在我国北方,冬油菜于 8月中旬—9月上旬播种,次年3月中、下旬返青,5月 下旬开始收获,收获后可复种其他作物(玉米、马铃 薯、向日葵、荞麦、蔬菜等),具有显著的经济效益。其 次,种植冬油菜可充分利用北方的光热资源,将北方 传统的一年一熟模式转变为两年三熟模式^[3],增加冬 季土地覆盖,避免春耕,减少农田土壤表面灰尘^[4],而 农田表面灰尘是沙尘暴沙尘的重要来源。

脱落酸(Abscisic acid,ABA)与植物的多种抗逆 性有关^[5]。在高等植物中,ABA 生物合成主要通过 间接途径进行,在此合成途径中有多种酶参与^[5], 其中 9-cis 环氧类胡萝卜素双加氧酶(NCED)基因 是关键的限速基因^[6-7]。因此,在许多植物中 NCED 均被克隆^[8-11]。拟南芥基因组中编码 NCED 的同源 基因有 9 个,其中 AtNCED3 基因的表达可由干旱胁 迫诱导^[12];AtNCED3 过表达可提高转基因植物对脱 水胁迫的耐受性,这表明 AtNCED3 的诱导调节了 ABA 在脱水过程中的积累^[13]。干旱胁迫后,烟草 的 NCED3 基因表达上调,ABA 含量增加^[14]。关于 NCED 基因在不同胁迫条件下的表达调控及其作用 的研究也有很多报道^[15-16]。

研究发现,越冬前随着温度逐渐降低,白菜型 冬油菜的叶片逐渐变黄,ABA 含量增加^[17],至越冬 期叶片完全干枯,次年返青后自生长点重新长出心 叶而完成生殖生长(图1)。因此,本研究克隆了白 菜型冬油菜的 NCED3 基因及启动子序列,比较其与 甘蓝型油菜的差异,并分析了不同胁迫处理条件下 NCED3 的表达特性,为了解 NCED3 基因的表达调 控和 NCED3 启动子的结构特征,培育新的抗逆油菜 品种奠定基础。

- 1 材料与方法
- 1.1 试验材料

选用2个抗寒性不同的白菜型冬油菜品种。陇

油 6 号为超强抗寒性品种,可在我国北方极端低温 为-20℃~-32℃的地区安全越冬,2010 — 2017 年 多点平均越冬率为90%;天油 2 号为强抗寒性品种, 可在甘肃天水等地极端低温为-20℃的地区种植, 2010 — 2017 年多点平均越冬率为60%^[1,3]。

选取饱满的上述油菜种子发芽,发芽后将材料播种于 10 cm×10 cm 的营养钵中,至幼苗生长至5 片叶,置于低温培养箱中,4℃培养 10 h 后,采集叶片用于 RNA 的提取。

1.2 基因及启动子克隆

参照马骊等^[18]方法提取 RNA 并合成 cDNA 第 一链。根据 GenBank 中公布的在甘蓝型油菜 A3 染 色体上的 NCED3(登陆号:LOC103870025)基因的 序列,在白菜型油菜基因组中寻找匹配序列,用匹 配序列作模板,利用 Primer 5.0 软件设计引物(引物 序 列: ATGACTTCTTTCACGGCGACT, TTACACCT-GATTCGCCAAGT)克隆基因。

1.3 序列分析

利用 NCBI 网站的软件 BLAST 和 ORF finder 进行核苷酸序列比较和开放阅读框分析。用 Expasy Protparam 软件分析蛋白质的分子量、等电点和氨基 酸组成及疏水性。用 Conserved Domains 分析蛋白 质的结构功能域。蛋白质的二级结构使用在线工 具 SOPMA 进行预测,三级结构使用在线软件 Swissmodel 进行模拟。利用 BLAST 软件从 NCBI 的 Gen-Bank 库中挑选十字花科植物的 NCED3 基因编码蛋 白质的氨基酸序列,用 DNAMAN8 软件进行氨基酸 序列多重比较,用 MEGA 软件分析基因同源性并构 建系统进化树。启动子预测采用 Plant CARE 及 PLACE 在线软件分析。

1.4 基因表达分析

当幼苗长至5片叶开始进行胁迫处理,分别为 低温胁迫处理:将幼苗置于低温培养箱中于4℃培 养;干旱胁迫处理:叶面喷施20% PEG-6000 模拟 干旱;ABA 处理:叶面喷施100 μM ABA。于各处理 后0(对照,CK)、2、4、8、12 h 分别取幼苗相同部位 的叶片及根系,液氮冻存后提取 RNA 用于基因表达 分析。根据上述 1.2 节所得基因序列设计引物 BN9DN,以油菜"看家基因" Actin 作为内参,引物序 列见表 1。经普通 PCR 扩增后电泳检测其特异性, 以浓度一致的陇油 6 号和天油 2 号叶片 cDNA 为模 板,进行荧光定量 PCR,目的基因与内参基因对应 各 3 次重复,采用 2^{-ΔΔCt}方法计算^[18]。

1.5 数据分析

采用 Excel 和 SPSS 进行数据的统计分析和 作图。

2 结果与分析

2.1 NCED3 序列分析

陇油 6 号 NCED3 的 cDNA 序列含有一个长度 为 1 794 bp 的完整 ORF,编码含 597 个氨基酸的蛋 白质,属 RPE65 超家族,由 20 种氨基酸组成,其中 以 Leu、Ala 所占比例最高,分别为 8.0%、8.2%,相对 分子质量约 65.74 kD,理论等电点为 5.81,总平均亲 水指数为-0.293,表明该蛋白为亲水性蛋白;含有其 蛋白家族保守结构域;具有 1 处最大疏水峰。蛋白

质二级结构中含有 27.81% 的 α 螺旋、23.12% 的延 伸链、9.72% 的 β 折叠, 39.36% 的无规则卷曲, α 螺 旋和无规则卷曲是 NCED3 二级结构的主要成分 (图 2)。

天油 2 号 *NCED*3 的 cDNA 序列含有一个长度 为 1,794 bp 的完整 ORF,编码含 597 个氨基酸的蛋 白质,由 20 种氨基酸组成,其中以 Leu、Ala 所占比 例最高,均为 8.0%,相对分子质量约 65.78 kD,理论 等电点为 5.94,总平均亲水指数为-0.318,表明该蛋 白为亲水性蛋白;含有其蛋白家族保守结构域;具 有 1 处最大疏水峰。蛋白质二级结构中含有 25.46%的α螺旋、23.62%的延伸链、10.55%的β折 叠,40.37%的无规则卷曲,无规则卷曲是 *NCED*3 二 级结构的主要成分(图 3)。

表 1 PCR 引物序列

Table 1 Sequence of PCR primers

引物 Primer	序列 Sequence (5'-3')
Actin-F	TGTGCCAATCTACGAGGGTTT
Actin-R	TTTCCCGCTCTGCTGTTGT
BN9DN-F	TCCCCAAGCAACCCACCA
BN9DN-R	GGACGGGCTGTTCATTCACTG

图 2 陇油 6 号 NCED3 的结构域(A)、疏水性(B)及三级结构模型(C)

Fig.2 Analysis of protein domain (A), hydrophobicity (B), and tertiary structure model (C) of NCED3 in Longyou 6

2.2 NCED3 序列比对及进化发育分析

由图 4 可见,L6NCED3 与 BnNCED3 蛋白相比, 有 5 处发生氨基酸变化,相似度为 99.16%,与 BrNCED3 有 1 处氨基酸不同。T2NCED3 与 BnNCED3 蛋白相比,有 6 处发生氨基酸变化,相似 度为 98.99%,与 BrNCED3 有 6 处氨基酸不同。 L6NCED3 与 T2NCED3 有 5 处发生氨基酸变化,相 似度为 99.16%。对白菜型冬油菜及其他近缘种的 *NCED3* 进行同源性比较及系统进化分析(图 5),陇 油 6 号与白菜的同源性最高,相似度为 99.83%,其 次为甘蓝型油菜、天油 2 号。陇油 6 号与天油 2 号 的相似度为 99.16%。其中,陇油 6 号与白菜的相似 度最高,天油 2 号与甘蓝型油菜的相似度最高。从 进化关系分析(图 5),所选的 14 个种与参试材料可 被分为 5 类。陇油 6 号、白菜、甘蓝型油菜、天油 2 号及甘蓝的 NCED3 在同一分类中。可见 NCED3 蛋 白比较保守,从而也可推断 NCED3 在白菜型冬油菜 中的功能与甘蓝型油菜相似。

2.3 启动子序列分析

2个品种的启动子序列相似性为 99.38%。启 动子序列预测结果显示,启动子具有 ABRE、TGAelement、CGTCA-motif、TGACG-element 等激素响应 元件(表 2)。此外,还鉴定出低温响应元件(LTR)、 防御和应激响应元件(TC-rich repeat)、生物过程中 常见的顺式作用元件如 CAAT-box 等、分生组织表 达 CAT-box 相关的顺式作用元件及- 30 TATA box 附近的核心启动子元件等。可见,*NCED*3 基因对不 同的非生物胁迫有不同的响应。2个品种中只有 1 个不同的元件(circadian),该元件与昼夜节律控制 有关。

图 3 天油 2 号 NCED3 的结构域(A)、疏水性(B)及三级结构模型(C)

Fig.3 Analysis of protein domain (A), hydrophobicity (B), and tertiary structure model (C) of NCED3 in Tianyou 2

BnNCED3	3 VTSFTATTAVSRRLVGGNHTKPPLITSSQSSGLSYSGSVPVTNRSQRKLNVSSALHTHPALHFPKQSSTSPAI I VNPKTKESDTKQNNLFQRAAAAALDAA	100
BrNCED3	3 VTSFTATTAVSRRLVGGNHTKPPLSSSQSSALSYSGSVPVTNRSQRKLNVSSALHTHPALHFPKQSSTSPAI I VNPKTKESDTKQNNLFQRAAAAALDAA	100
L6NCED3	3 VTSFTATTAVSRRLVGGNHTKPPLSSSQSSALSYSGSVPVTNRSQRKLNVSSALHTHPALHFPKQSSTSPAI I VNPKTKESDTKQNNLFQRAAAAALDAA	100
T2NCED3	4 VTSFTATTAVSRRLVGGNHTKPPLJSSSQSSALSYSGSVPVTNRSQRKLNVSSALHTHPALHFPKQSSTSPAI I VNPKTKESDTKQNNLFQRAAAAALDAA	100
BnNCED3	BEGELVSHERQHPLPKTADPS VQI AGNFAPVNEQPLRRNLPVVGKI PDS1 KGVYVRNGANPLHEPVTGHHFFDGDGMVHAVKFEDGSAS VACRFTQTNRFT	200
BrNCED3	EGFLVSHERQHPLPKTADPS VQI AGNFAPVNEQPLRRNLPVVGKI PDS1 KGVYVRNGANPLHEPVTGHHFFDGDGMVHAVKFEDGSAS VACRFTQTNRF1	200
L6NCED3	EGFLVSHERQHPLPKTADPS VQI AGNFAPVNEQPLRRNLPVVGKI PDS1 KGVYVRNGANPLHEPVTGHHFFDGDGMVHAVKFEDGSAS VACRFTQTNRF1	200
T2NCED3	EGFLVSHERQHPLPKTADPS VQI AGNFAPVNEQPLRRNLPVVGKI PDS1 KGVYVRNGANPLHEPVTGHHFFDGDGMVHAVKFEDGSAS VACRFTQTNRF1	200
BnNCED3	9 QERQLGRPVFPKAI GELHGHTGI ARLMLFYARAAAGLVDPAHGTGVANAGLVYFNNRLLANS EDDLPYQVRI TPGGDLKTVGRYDFDGQLESTM AHPKV	300
BrNCED3	9 QERQLGRPVFPKAI GELHGHTGI ARLMLFYARAAAGLVDPAHGTGVANAGLVYFNNRLLANS EDDLPYQVRI TPGGDLKTVGRYDFDGQLESTM AHPKV	300
L6NCED3	9 QERQLGRPVFPKAI GELHGHTGI ARLMLFYARAAAGLVDPAHGTGVANAGLVYFNNRLLANS EDDLPYQVRI TPGGDLKTVGRYDFDGQLESTM AHPKV	300
T2NCED3	9 QERQLGRPVFPKAI GELHGHTGI ARLMLFYARAAAGLVDPAHGTGVANAGLVYFNNRLLANS EDDLPYQVRI TPGGDLKTVGRYDFDGQLESTM AHPKV	300
BnNCED3	DPESGELFALSYDVVSKPYLKYFRFSPDGEKSPDVEI QLDQPTMHDFAI TENFVVI PDQQVVFKLQEM RGGSPVI YDKEKVARFGI LDKYAADSSGI R	400
BrNCED3	DPESGELFALSYDVVSKPYLKYFRFSPDGEKSPDVEI QLDQPTMHDFAI TENFVVI PDQQVVFKLQEM RGGSPVI YDKEKVARFGI LDKYAADSSGI R	400
L6NCED3	DPESGELFALSYDVVSKPYLKYFRFSPDGEKSPDVEI QLDQPTMHDFAI TENFVVI PDQQVVFKLQEM RGGSPVI YDKEKVARFGI LDKYAADSSGI R	400
T2NCED3	DPESGELFALSYDVVSKPYLKYFRFSPDGEKSPDVEI QLDQPTMHDFAI TENFVVI PDQQVVFKLQEM RGGSPVI YDKEKVARFGI LDKYAADSSGI R	400
BnNCED3	WEARNCFCFHLWNAWEEPETEEVVVI GSCNTPPDSI FNESDENLKSVLSEI RLNLRTGESTRRPI I SDGDQQVNLEAGWNRNMLGRKTKFAYLALAEP	500
BrNCED3	MEAPDCFCFHLWNAWEEPETEEVVVI GSCNTPPDSI FNESDENLKSVLGEI RLNLRTGESTRRPI I SDGDQQVNLEAGWNRNMLGRKTKFAYLALAEP	500
L6NCED3	MEAPDCFCFHLWNAWEEPETEEVVVI GSCNTPPDSI FNESDENLKSVLSEI RLNLRTGESTRRPI I SDGDQQVNLEAGWNRNMLGRKTKFAYLALAEP	500
T2NCED3	MEAPDCFCFHLWNAWEEPETEEVVVI GSCNTPPDSI FNESDENLKSVLSEI RLNLRTGESTRRPI I SDGDQQVNLEAGWNRNMLGRKTKFAYLALAEP	500
BnNCED3	MPKVSGFAKVDLATGEVKKHLYGDDRYGGEPLFLPGEGAEDDGHI LCFVHDENTVKSELQI VNAVSLEVEATVKLPSRVPYGFHGTFI GASDLANQ	596
BrNCED3	NPKVSGFAKVDLATGEVKKHLYGDDRYGGEPLFLPGEGAEDDGHI LCFVHDENTVTSELQI VNAVSLEVEATVKLPSRVPYGFHGTFI GASDLANQ	596
L6NCED3	MPKVSGFAKVDLATGEVKKHLYGDDRYGGEPLFLPGEGAEDDGHI LCFVHDENTVTSELQI VNAVSLEVEATVKLPSRVPYGFHGTFI GASDLANQ	596
T2NCED3	NPKVSGFAKVDLATGEVKKHLYGDDRYGGEPLFLPGEGAEDDGHI LCFVHDENTVTSELQI VNAVSLEVEATVKLPSRVPYGFHGTFI GASDLANQ	596
	注:BnNCED3:甘蓝型油菜;BrNCED3:白菜;L6NCED3:陇油6号;T2NCED3:天油2号。	

Note: BnNCED3: Brassica napus; BrNCED3:Brassica rapa; L6NCED3: Longyou 6; T2NCED3: Tianyou 2.

Fig.4 The blast results of NCED3 amino acid sequence

图 4 NCED3 氨基酸序列比对分析

NCED3 蛋白的进化发育分析 图 5

Fig.5 The phylogenetic tree of NCED3

表 2 启动子 DNA 顺式作用元件预测

Table 2 Putative cis-acting regulatory DNA elements in promoter

元件友称	豆劢	H- Hm	市台	拷贝数 Copy number		
Element	Sequence	生1初 Organism	Function	陇油6号	天油2号	
ABRE	ACGTG	拟南芥 Arabidopsis thaliana	参与 ABA 反应的顺式作用元件 Cis-acting regulatory element involved in the abscisic acid responsiveness	6	6	
ARE	AAACCA	玉米 Zea mays	厌氧诱导必需的贮藏元件 Latory element essential for the anaerobic induction	3	3	
CAAT-box	CAAT, CAAAT	烟草 豌豆 Nicotiana glutinosa , Pisum sativum	启动子和增强子区域共有顺式作用元件 Common cis-acting element in promoter and enhancer re- gions	38	38	
CAT-box	GCCACT	拟南芥 Arabidopsis thaliana	与分生组织的表达有关的顺式作用调控元件 Cis-acting regulatory element related to meristem expres- sion	1	1	
LTR	CCGAAA	大麦 Hordeum vulgare	与低温响应有关的顺式作用元件 Cis-acting element involved in low-temperature responsive- ness	1	1	
TATA-box	ТАТА	拟南芥 Arabidopsis thaliana	转录起始-30 区的核心启动子元件 Core promoter element around-30 of transcription start	75	67	
TC–rich repeats	ATTCTCTAAC	烟草 Nicotiana glutinosa	防御和应激反应的顺式作用元件 Cis-acting element involved in defense and stress respon- siveness	1	1	
TGA-element	AACGAC	甘蓝 Brassica oleracea	生长素响应元件 Auxin-responsive element	1	1	
CGTCA-motif	CGTCA	大麦 Hordeum vulgare	茉莉酸响应的顺式调控元件 Cis-acting regulatory element involved in the MeJA-re- sponsiveness	2	2	
TGACG-motif	TGACG	大麦 Hordeum vulgare	茉莉酸响应的顺式调控元件 Cis-acting regulatory element involved in the MeJA-re- sponsiveness	2	2	
G-box	TACGTG	拟南芥 Arabidopsis thaliana	参与光响应的顺式调控元件 Cis-acting regulatory element involved in light responsive- ness	4	4	
G-box	TAACACGTAG	甘蓝 Brassica oleracea	参与光响应的顺式调控元件 Cis-acting regulatory element involved in light responsive- ness	1	1	
G-box	ACACGTGGC	甘蓝型油菜 Brassica napus	参与光响应的顺式调控元件 Cis-acting regulatory element involved in light responsive- ness	1	1	
TCT-motif	TCTTAC	拟南芥 Arabidopsis thaliana	光响应元件的一部分 Part of a light responsive element	1	1	
chs-CMA2a	TCACTTGA	香芹 Petroselinum crispum	光响应元件的一部分 Part of a light responsive element	1	1	
circadian	CAAAGATATC	番茄 Lycopersicon esculentum	参与昼夜节律控制的顺式调控元件 Cis-acting regulatory element involved in circadian control	0	1	

2.4 NCED3 表达分析

由图 6 可见,胁迫处理后 NCED3 在叶片和根中 的表达均高于 CK,且均呈上升趋势,于 8 h 达到峰 值后略有下降,说明 ABA、低温和干旱均可诱导 NCED3 基因表达。ABA 处理后(图 6A), NCED3 在 2 个品种叶片和根中的表达均上调,其中天油 2 号的增长幅度高于陇油 6 号。低温处理后,基因表 达与 ABA 处理呈现相似的表达趋势(图 6B);陇油 6 号叶片在 4 h 时的表达水平低于 CK,可能是胁迫 下的强烈应激反应所致。PEG 处理后,基因表达随 处理时间延长呈逐渐增加的趋势,于 8 h 显著增高 后降低(图 6 C)。与根系的表达特性相比,3 种处 理后叶片的基因表达均在 2 h 显著升高,天油 2 号 的升高幅度均大于陇油 6 号,可推断天油 2 号的叶 片比陇油 6 号对胁迫的反应更快,胁迫后基因表达 快速升高,合成积累大量的 ABA 来应对胁迫。

3 讨论与结论

基因结构的改变会导致基因表达的改变, 拟南 芥中 AtNCED3 的 274 和 327 位氨基酸的变化可能 导致其表达的改变^[19-20]。在本研究中, 陇油 6 号和 白菜的 NCED3 同源性较高, 而天油 2 号与甘蓝型油 菜的 NCED3 同源性较高; 2 个抗寒性不同的冬油菜 NCED3 相似度很高, 且亲缘关系很近。可见 NCED3 蛋白比较保守, 从而也可推断 NCED3 在白菜型冬油 菜中的功能与甘蓝型油菜相似。

基因启动子中所含的顺式作用元件在基因表 达调控中起着重要作用,基因的不同启动子特征决 定了基因的不同表达特征[21-22]。根据预测结果 2 个品种的启动子相似性高,具有常见的与激素有关 的元件如: ABRE、TGA - element、CGTCA - motif、 TGACG-elemen 等,可见 NCED3 基因的表达可能受 到生长素、脱落酸、茉莉酸甲酯等的调控,本研究结 果也表明 ABA 处理可诱导 NCED3 基因的表达。光 可以参与植物的光合作用,也是一种非常重要的信 号物质,从而调节基因转录^[23-24]。本研究的启动子 有3个与光相关的元件:G-box、TCT-motif和 chs-CMA2a,它们通常存在于光诱导基因的启动子中;由 此推断,NCED3的表达可能会受到光照的调控。在 本研究结果中,白菜型冬油菜启动子中有1个特殊 的元件,即低温响应元件(low-temperature responsiveness, LTR),该元件在其他被报道植物的 NCED 启动子中不存在[25-28]。因此推测,该基因可能受低 温调控,本研究的基因表达分析结果也证实了该推 测。本试验首次分析了低温(4℃)处理对 NCED3 表达的影响,低温可诱导白菜型冬油菜 NCED3 的表 达。2个品种中有1个不同的 DNA 元件,即昼夜节

注:(A) ABA 处理后的 NCED3 基因表达;(B) 低温 (4℃)处理后 NCED3 基因表达;(C) PEG 处理后 NCED3 基 因表达。小写字母表示差异显著(P≤0.05)。

Note: (A) NCED3 gene expression under ABA treatment; (B) NCED3 gene expression under low temperature (4°C) treatment; (C) NCED3 gene expression under PEG treatment. Different lowercase letters indicate significant differences ($P \leq 0.05$).

图 6 不同处理条件下 NCED3 表达分析

Fig.6 The effects on NCED3 expression by different treatments

律控制元件,它与季节反应的调节、从营养生长到 生殖生长的转变以及休眠的开始等相关^[29]。种子 萌发、下胚轴伸长、叶片运动、气孔导度、开花、衰老 等发育过程均通过昼夜节律钟进行调节^[30]。根据 形态学观察,天油2号的下胚轴长度确实比陇油6 号的长。因此,如果与昼夜节律控制因素有关,这 种差异是否与2个品种的抗寒性有关,可以作为我 们今后研究的方向。

本研究中,NCED3 基因可以在冬油菜的根和叶 中表达,而没有组织特异性,这与拟南芥的研究结 果相似^[31]。经过低温、PEG 模拟干旱和 ABA 处理 后,NCED3 在陇油 6 号和天油 2 号中的表达量均增 加。已有研究表明,NCED3 通过调控 ABA 的合成, 在植物耐旱性方面发挥重要作用^[32]。本研究中干 旱胁迫可诱导 NCED3 的表达,12 h 前表达量急剧增加,12 h 后下降,这与 Xian 等^[32]和 Zhang 等^[11]的研究结果基本一致。本研究中,在低温、模拟干旱及喷施 ABA 处理中,随着处理时间延长,天油 2 号的 NCED3 基因表达增加幅度均高于陇油 6 号(包括叶片和根),由此可见,逆境胁迫后弱抗寒品种比强抗寒品种更敏感,胁迫初期快速做出反应,调控基因表达来应对逆境,该结论与 Zeng 等^[33]的结果相似。

参考文献:

- 孙万仓,武军艳,方彦,等.北方旱寒区北移冬油菜生长发育特性[J]. 作物学报,2010,36(12):2124-2134.
- [2] 周冬梅,张仁陟,孙万仓,等.北方旱寒区冬油菜种植气候适应性研究[J].中国农业科学,2014,47(13):2541-2551.
- [3] 孙万仓,刘海卿,刘自刚,等.北方寒旱区白菜型冬油菜安全越冬的临 界指标分析[J].作物学报,2016,42(4):609-618.
- [4] 王学芳,孙万仓,李孝泽,等.河西走廊种植冬油菜的环境效应[J].作 物学报,2008, 34(12): 2210-2217.
- [5] Nakashima K, Yamaguchi-Shinozaki K. ABA signaling in stress-response and seed development [J]. Plant Cell Reports, 2013, 32(7):959-970.
- [6] Qin X Q, Zeevaart J A D. Overexpression of 9-cis-epoxycarotenoid dioxygenase gene in *Nicotiana Plumbaginifolia* increases abscisic acid phaseic acid levels and enhances drought tolerance [J]. Plant Physiology, 2002, 128(2):544-551.
- [7] Thompson A J, Jackson A C, Symonds R C, et al. Ectopic expression of a tomato 9-cis-epoxycarotenoid dioxygenase gene causes over-production of abscisic acid [J]. The Plant Journal, 2001, 23(3):363-374.
- [8] 牛志强,刘国顺,师婷婷,等. 烟草 NCED3 基因的克隆及其干旱胁迫 表达分析[J].中国烟草学报,2015,20(3): 100-105.
- [9] Zhang Y M, Yang J F, Lu S Y, et al. Overexpressing SgNCED1 in tobacco increases ABA level, antioxidant enzyme activities, and stress tolerance[J]. Journal of Plant Growth Regulation, 2008, 27(2):151-158.
- [10] Qin X, Zeevaart J A D. The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water stressed bean [J]. Proceedings of the National Academy of Sciences, USA, 1999, 96(26):15354-15361.
- [11] Zhang M, Leng P, Zhang G L, et al. Cloning and functional analysis of 9-cis- epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits [J]. Journal of Plant Physiology, 2009, 166(12):1241-1252.
- [12] Schwartz S H, Qin X Q, Zeevaart J A D. Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes [J]. Plant Physiology, 2003, 131(4):1591-1601.
- [13] Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis [J]. The Plant Journal, 2001, 27(4):325-33.
- [14] Wang Y C, Jiang J, Zhao X, et al. A novel LEA gene from *Tamarix androssowii* confers drought tolerance in transgenic tobacco [J]. Plant Science, 2006, 171(6):655-662.
- Schwartz S H, Tan B C, Gage D A, et al. Specific oxidative cleavage of carotenoids by VP14 of maize [J]. Science. 1997, 276(5320):1872
 1874.
- [16] Chernys J T, Zeevaart J A D. Characterization of the 9cisepoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado [J]. Plant Physiology. 2000, 124

(1):343-353.

- [17] 武军艳,刘海卿,方彦,等. 白菜型冬油菜品种抗寒性与内源 ABA 含量的关系[J]. 中国油料作物学报, 2017, 5 (2):185-189.
- [18] Ma L, Coulter J A, Liu L J, et al. Transcriptome analysis reveals key cold-stress-responsive genes in winter rapeseed (*Brassica rapa* L.) [J]. International Journal of Molecular Sciences, 2019, 20(5):1071.
- [19] Hao G P, Zhang X H, Wang Y Q, et al. Nucleotide variation in the NCED3 region of Arabidopsis thaliana and its association study with abscisic acid content under drought stress [J]. Journal of Integrative Plant Biology, 2009, 51(2):175-183.
- [20] Zhu C F, Kauder F, Romer S, et al. Cloning of two individual cDNAS encoding 9- cis-epoxycarotenoid dioxygenase from *Gentiana Lutea*, their tissue-specific expression and physiological effect in transgenic tobacco [J]. Journal of Plant Physiology, 2007, 164(2):195-204.
- [21] Potenza C, Aleman L, Sengupta-Gopalan C. Invited review: targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation [J]. In Vitro Cellular and Developmental Biology-Plant, 2004, 40(1):1-22.
- [22] Toledo-Ortiz G, Huq E, Rodríguez-Concepción M. Direct regulation of phytoene synthase gene expression and carotenoid biosynthesis by phytochrome-interacting factors [J]. Proceedings of the National Academy of Sciences, USA, 2010, 107(25):11626-11631.
- [23] Cheminant S, Wild M, Bouvier F, et al. DELLAs regulate chlorophyll and carotenoid biosynthesis to prevent photooxidative damage during seedling deetiolation in Arabidopsis [J]. Plant Cell, 2011, 23(5): 1849-1860.
- [24] Castillon A, Shen H, Enamul H. Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks [J]. Trends in plant science, 2007, 12(11):514-521.
- [25] Verslues P E, Zhu J K. Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress [J]. Biochemistry Society Transactions, 2005, 33(2): 375-379.
- [26] Li T, Sun J K, Li C R, et al. Cloning and expression analysis of the *FvNCED3* gene and its promoter from ash (*Fraxinus velutina*) [J]. Journal of Foresty Research, 2019, 30(2):471-482.
- [27] Behnam B, Iuchi S, Fujita M, et al. Characterization of the promoter region of an Arabidopsis, gene for 9-cis-Epoxycarotenoid dioxygenase involved in dehydration-inducible transcription [J]. DNA Research, 2013, 20(4):315-324.
- [28] 任爱琴,易津,高洪文,等. 柠条锦鸡儿 CkNCED1 基因启动子的克隆 及表达分析[J]. 草业学报, 2013, 22(2): 165-170.
- [29] Harmer S L. The circadian system in higher plants [J]. Annual Review of Plant Biology, 2009, 60(1):357-377.
- [30] Inoue K, Araki T, Endo M. Circadian clock during plant development [J]. Journal of Plant Research, 2018, 131(1):59-66.
- [31] Sato H, Takasaki H, Takahashi F, et al. Arabidopsis thaliana NGATHA1 transcription factor induces ABA biosynthesis by activating NCED3 gene during dehydration stress [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11178-E11187.
- [32] Xian L H, Sun P P, Hu S S, et al. Molecular cloning and characterization of *CrNCED*1, a gene encoding 9-cis-epoxycarotenoid dioxygenase in *Citrus reshni*, with functions in tolerance to multiple abiotic stresses [J]. Planta, 2014, 239(1):61-77.
- [33] Zeng X C, Xu Y Z, Jiang J J, et al. Identification of cold stress responsive microRNAs in two winter turnip rape (*Brassica rapa* L.) by high throughput sequencing [J]. BMC Plant Biology, 2018, 18(1):1-13.