U V -B 辐射增强下葡萄叶片光合特性 与叶龄关系的研究

周新明¹,惠竹梅¹,焦旭亮¹,张振文¹,吴鲁阳² (1.西北农林科技大学葡萄酒学院,陕西杨凌 712100; 2.陕西科技大学,陕西西安 710000)

摘 要:自然光照条件下,以酿酒葡萄"赤霞珠"($Cabernet\ Sauwignon$)为材料,研究了UV-B 辐射增强下葡萄叶片光合特性与叶龄的关系。结果表明:低辐射(T1)处理下,葡萄叶片的光合能力随着叶龄增加而显著增加,与对照(CK)相比达极显著水平;高辐射(T2)处理下,葡萄叶片的光合能力随着叶龄增加而降低,但与对照(CK)相比差异不显著。这说明葡萄对UV-B 辐射增强有较强的适应性,适当增加UV-B 辐射剂量对葡萄叶片 Pn 具有一定的促进作用。

关键词: UV-B 辐射; 葡萄; 叶龄; 光合特性

中图分类号: S663.1 文献标识码: A 文章编号: 1000-7601(2007)04-0216-05

由于大气臭氧层不断受到破坏,地球表面 UV-B 辐射强度随之增强^[1],影响了植物的正常生长发育。UV-B 辐射增强对植物生长发育的影响已成为生态学的一个研究热点^[2]。

目前,关于自然光照条件下 UV-B 辐射增强对植物光合作用的影响已有许多报道^[3]。然而,关于自然光照条件下增加 UV-B 辐射对葡萄光合作用的影响报道较少。本试验通过对 UV-B 辐射增强下葡萄叶片光合特性与叶龄关系的研究,分析不同叶龄葡萄叶片光合能力对 UV-B 辐射增强的敏感性,以期为研究自然环境条件下 UV-B 辐射增强对葡萄生长发育的影响提供资料。同时,对未来生态环境可能的变化、改进葡萄育种以及栽培技术等方面具有重要的理论和实践意义。

1 材料与方法

1.1 材料与试验设计

试验于 2005 年 5 月至 2006 年 9 月在西北农林 科技大学葡萄酒学院进行。

材料来源于西北农林科技大学葡萄酒学院张家 岗葡萄园苗圃,品种为欧洲葡萄(*V.vinifera* L.)赤 霞珠(*Cabernet Sauvignon*),于 2005 年选取 120 株 生长势基本一致的扦插苗移栽至盆内(盆高 210 mm,直径 280 mm,培养土按园土:基质=3:2 配制 而成),单盆土重 8.5 kg 左右,肥水管理相同,以减

少试验误差。冬季每株留3个芽进行修剪,第二年春季萌芽后每株分别留两个生长健壮的新稍进行培养,其余抹除。待新稍长至9~11枚成熟叶片时,选取90株生长相对一致的植株作为试验对象。根据试验设计随机分为3组,每组一个处理,每处理30株。2006年5月13日开始进行UV-B辐射处理,每天处理9h(8:00~17:00),阴雨天停止辐射。累计辐射两个月后,参考李予霞等[4]的方法从梢尖向下依次选取5个节位的成熟叶片(分别代表叶龄1、叶龄2、叶龄3、叶龄4、叶龄5)作为光合作用各项生理指标的测定对象,每个处理选5株,随机取样,3次重复。

1.2 UV-B 辐射处理

试验在自然光照条件下进行,根据人工增加 UV-B 辐射强度不同设 0(CK), $10.8~\mu W/cm^2(T1)$, $25.6~\mu W/cm^2(T2)$ 3 个处理。紫外光源由 8 支 40 W 中波紫外线灯组成(购于北京电光源研究所),发射光谱为 $280\sim320~nm$, 主峰值为 308~nm。根据试验设计的 $3 \sim UV-B$ 辐射处理强度,将可调高度的紫外线灯管平行架于葡萄植株上方,用北京师范大学光电仪器厂生产的 UV-B 紫外辐照计确定 297~nm 处的紫外辐射强度(以植株顶部为准),为保证试验期间增加的辐射强度恒定不变,根据植株的生长情况不断地调整灯管的高度。

1.3 光合作用参数的测定

选晴天, 用美国 LI-COR 公司生产的 LI-

收稿日期:2006-10-30

作者简介:周新明(1978—), 男, 河南辉县人, 在读硕士, 主要从事酿酒葡萄生理生态的研究。 **通讯作者:** 张振文(1960—), 男, 陕西耀县人, 教授, 博士生导师。E-mail, Zhangzhw 60@163. com. 6400 便携式光合仪,在人工红蓝光源[光照强度: $1400 \, \mu_{\text{mol}}/(\text{m}^2 \cdot \text{s})$]条件下,测定葡萄叶片的净光合速率(Pn)、气孔导度(Gs)、胞间 CO_2 浓度(Ci)、蒸腾速率(Tr)、大气 CO_2 浓度(Ca)、水分利用效率(WUE = Pn/Tr)、气孔限制值(Ls = 1 - Ci/Ca)等各项光合生理指标。

2 结果与分析

2.1 UV-B 辐射增强下葡萄叶片 Pn 与叶龄的关系

从图 1A 可以看出,在T1 处理下,Pn 变化趋势 与CK 一致,且T1>CK;T2 处理下,葡萄叶片的 P_n 随着叶龄的增加呈下降趋势, 但叶龄 1、2、3 的 Pn 均大于 CK。从表 1 可以看出, T1 处理下, 随着 叶龄增加 P_n 分别为 CK 的 112%, 112%, 106%, 102%,103%,其中叶龄2差异达显著水平,叶龄1、 3 差异达极显著水平, 不同叶龄平均值为 CK 的 106%, 差异达极显著水平; T2处理下, 随着叶龄增 加 Pn 分别为 CK 的 127%, 108%, 102%, 93%, 86%,其中叶龄2显著增加,叶龄1极显著增加,而 叶龄 4、5 极显著下降,不同叶龄平均值为 CK 的 102%, 差异不显著。这说明增加低剂量的 UV-B 辐 射能够提高不同叶龄葡萄叶片的光合能力,而增加 高剂量的 UV-B 辐射对叶龄 1~3 叶片的光合能力 有明显的促进作用,而后随着叶龄的增加葡萄叶片 的光合能力显著下降。

2.2 UV-B 辐射增强下葡萄叶片 Gs 与叶龄的关系

从图 1B 可以看出,与 CK 相比, UV-B 辐射增强后,葡萄叶片的 Gs 值随着叶龄的增加呈下降趋势,整体表现为 CK >T1>T2。从表 1 可以看出, T1 处理下,随着叶龄增加 Gs 值分别为 CK 的 108%, 101%, 95%, 86%, 86%, 平均值为 CK 的 94%, T2 处理下,随着叶龄增加 Gs 值分别为 CK 的 144%, 98%, 89%, 77%, 65%, 平均值为 CK 的 89%, T1、T2 的叶龄 3、4、5 与 CK 相比 Gs 下降均达到极显著水平,但二者平均值与 CK 相比差异不显著。这表明 UV-B 辐射增强下,葡萄叶片的 Gs 显著下降,说明 UV-B 辐射增强下,随着叶龄增加,导致葡萄光合作用下降的原因主要是气孔性限制因素。

$2.3~{ m UV-B}$ 辐射增强下葡萄叶片 Tr 与叶龄的关系

中国的可以看出,在T1处理下,Tr 变化随着

叶龄增加呈上升趋势,且 T^1 > CK, T^2 处理下,葡萄叶片的 Tr 随着叶龄的增加呈下降趋势,除叶龄 1 外,Tr 均小于 CK,整体趋势表现为 T^1 > CK > T^2 。从表 1 可以看出, T^1 处理下,随着叶龄增加 Tr 值分别为 CK 的 115%,113%,111%,107%,105%,其中叶龄 1 差异达显著水平,叶龄 3 差异达极显著水平,不同叶龄均值为 CK 的 110%,差异达极显著水平; T^2 处理下,随着叶龄增加 Tr 值分别为 CK 的 137%,101%,95%,87%,79%,其中叶龄 1 显著增加,叶龄 3、4、5 下降达极显著,不同叶龄均值为 CK 的 97%,但下降不显著。这表明低剂量 UV-B 辐射能够显著增加葡萄叶片的 Tr,而高剂量的 UV-B 辐射,随着剂量的积累和叶龄增加葡萄叶片的 Tr 也随着降低。

2.4 UV-B 辐射增强下葡萄叶片 Ci 与叶龄的关系

从图 1D 可以看出,在自然光照条件下,葡萄叶片的 *Ci* 随着叶龄增加呈上升趋势。UV-B 辐射增强后,葡萄叶片的 *Ci* 随着叶龄增加呈下降趋势,且表现为 CK >T1>T2。从表 1 可以看出,T1 处理下,随着叶龄增加 *Ci* 分别为 CK 的 90%,91%,90%,87%,87%,与 CK 均达到极显著水平,其均值为 CK 的 98%,与 CK 相比,也达到极显著水平;T2处理下,随着叶龄增加 *Ci* 值分别为 CK 的 114%,94%,90%,86%,82%,其中除叶龄 1 显著增加外,其它极显著下降,不同叶龄平均值为 CK 的 92%,下降也达极显著水平。这说明 UV-B 辐射增强能极显著降低葡萄叶片的 *Ci*,这可能会直接影响葡萄叶片光合作用的 CO₂ 同化速率。

2.5 UV-B 辐射增强下葡萄叶片 WUE 与叶龄的 关系

从图 1E 可以看出,与 CK 相比,在 T1 处理下,不同叶龄的 WUE 表现为 T1 < CK, T2 处理下,除叶龄 1 外,不同叶龄的 WUE 均表现为 T2 > CK,且整体表现为 T2 > CK > T1。从表 1 可以看出, T1 处理下,随着叶龄增加 WUE 值分别为 CK 的 97%,98%,96%,95%,97%,其中叶龄 3 差异达显著水平,叶龄 1、4 差异达极显著水平,不同叶龄平均值为 CK 的 97%,但差异不显著。T2 处理下,随着叶龄增加 WUE 值分别为 CK 的 92%,106%,106%,106%,106%,107%,其中叶龄 2 差异达显著水平,叶龄 1、3、4 差异达极显著水平,不同叶龄平均值为 CK 的 104%,经方差分析差异不显著。

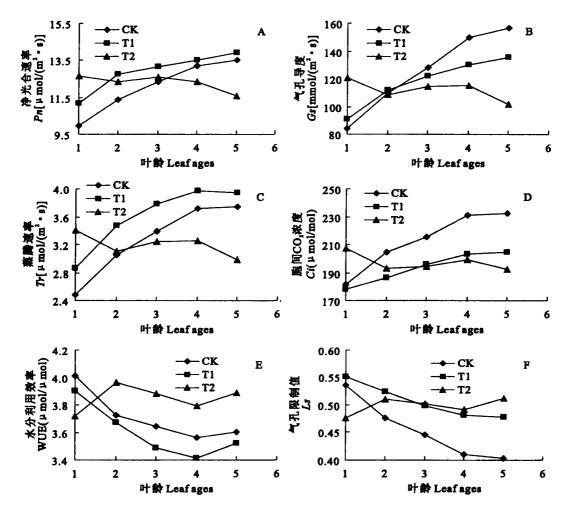


图 1 UV-B 辐射增强下葡萄叶片净光合速率(A)、气孔导度(B)、蒸腾速率(C)、胞间 CO_2 浓度(D)、水分利用效率(E)、气孔限制值(F)与叶龄的关系

Fig. 1 The relationships of grapevine leaf ages with net photosynthetic rate(A), stomatal conductance(B), transpiration rate(C), intercellular CO_2 concentration(D), water use efficiency(E) and stomatal limitation(F) under the enhenced UV-B radiation

2.6 UV-B 辐射增强下葡萄叶片 Ls 与叶龄的关系

从图 1F 可以看出,在自然光照条件下,葡萄叶片的 Ls 随着叶龄增加呈下降趋势。UV-B 辐射增强处理后,T1、T2 的 Ls 均随着叶龄增加而增大,且整体表现为 T1 T2 CK。从表 1 可以看出,T1 处理下,随着叶龄增加 Ls 分别为 CK 的 103%, 110%, 113%, 117%, 120%, 其中叶龄 2, 3, 4, 5 差异达极显著水平,不同叶龄平均值为 CK 的 112%,与 CK 相比差异极显著。T2 处理下,随着叶龄增加 Ls 分别为 CK 的 88%, 108%, 113%, 119%, 127%, 除叶龄 1 外,均达极显著水平,不同叶龄平均值为 CK 的 110%, 达极显著水平。这表明 UV-B 辐射增强后,气孔限制性因素是降低葡萄叶片光合作用的因素之一。

3 讨 论

国知网 https://www.cnki.net 大量研究认为,不同植物的光合作用对 UV-B 辐射增强的敏感性不同 $^{[3,5]}$,UV-B 辐射增强会破坏叶绿体等光合器官结构,引起光合色素降解 $^{[6]}$ 、抑制气孔开放、降低气孔导度和胞间 CO_2 浓度、降低 CO_2 同化速率 $^{[7]}$ 、PS II 活性中心受到破坏、光合电子传递过程受阻 $^{[8]}$ 等,最终导致光合作用下降。有研究认为,植物幼叶对 UV-B 的反应比老叶敏感,随着叶位升高,UV-B 辐射对光合作用的抑制作用也较大 $^{[3,9]}$ 。本试验结果表明,低剂量的 UV-B 辐射促进了不同叶龄葡萄叶片的光合作用,其平均值显著高于 CK,高剂量 UV-B 辐射虽然随着叶龄增加葡萄叶片的光合能力显著下降,但其不同叶龄 Pn 平均值与 CK 相比差异并不显著,这说明葡萄叶片对 UV-B 辐射增强有较强的适应性。

从试验结果中还可以看出,UV-B 辐射处理下,随着叶龄增大,葡萄叶片的气孔导度(Gs)、胞间 CO_2 浓度(Ci)显著降低,气孔限制值(Ls)显著增大,这表明随着UV-B 辐射强度增加和叶龄增大,葡

萄叶片净光合速率(Pn)下降,主要是由于气孔限制性因素引起的 $[^{10}]$ 。蒸腾速率(Tr)随着 UVB 辐射

剂量加大下降、水分利用效率(WUE)增加,可能与UV-B辐射对气孔开闭的调节有关[11]。

表 1 UV-B 辐射增强对不同叶龄葡萄叶片光合特性的影响(平均数土标准差, n=15)

Table 1 Effects of enhanced UV-B radiation on photosynthesis of different leaf ages of grapevine (Mean \pm SD, n=15)

光合参数 Photosynthesis parameters	处理 _ Treatments	叶龄 Leaf ages					
		s 1	2	3	4	5	平均 Mean
净光合速率 Pn [^µ mol/(m ² •s)]	CK	9.94±0.88 _c C (100)	11.38±0.08 _b A (100)	12.37±0.48 ьВ (100)	13.21±0.76 _a AB (100)	$13.50\pm0.35_{\mathbf{aA}}$ (100)	12.08±1.42 ьВ (100)
	T1	11.16±0.12 ьВ (112)	12.75±1.31 _a A (112)	13.18±0.08 _a A (106)	13.53±0.81 _a A (102)	13.91±0.72 aA (103)	12.89±1.21 _a A (106)
	T 2	12.66±0.53 _{aA} (127)	12.33±0.15 _{ab} A (108)	12.58±0.50 bAB (102)	12.35±0.11 ьв (93)	11.58±0.39 ьв (86)	12.30±0.52bAB (102)
气孔导度 Gs 〔mmol/(m²•s)〕	CK	83.93±10.60 bB (100)	110.17±9.70 _a A (100)	128.33±4.80 _{a} A (100)	149.50±6.69 aA (100)	156.83±2.93 _a A (100)	125.75±29.70 _a A (100)
	Т1	90.55±0.82 ьВ (108)	112.08±18.67 _a A	121.83±2.04bAB (95)	129.83±13.00 ьВ (86)	135.50±19.16bB (86)	$117.95 \pm 17.67_{aA}$ (94)
	т2	120.83±11.51 _a A (144)	108.50±4.97 _{aA} (98)	114.33±7.39 cB (89)	115.00±8.46 _c B (77)	101.73±1.93 _c C (65)	112.08±7.24 aA (89)
蒸腾速率 Tr ["mol/(m ² *s)]	CK	2.48±0.35 cB (100)	3.06±0.11 _a A (100)	3.40±0.07 bB (100)	3.71±0.36 _a A (100)	3.75±0.24 _a A (100)	3.28±0.53 ьв (100)
	T1	2.86±0.05 bB (115)	3.48±0.59 _a A (113)	3.78±0.07 _a A (111)	3.97±0.24 aA (107)	3.95±0.18 _a A (105)	3.59±0.51 _a A (110)
	т2	3.40±0.24 _a A (137)	3.11±0.04 _a A (101)	3.24±0.14 ьВ (95)	3.26±0.15 bB (87)	2.98±0.06 ьв (79)	3.20±0.20 ьв (97)
胞间 CO2 浓度 <i>Ci</i> 〔mmol/mol〕	CK	181.83±6.85 bB (100)	204.50±15.20 _a A (100)	215.67±2.58 _a A (100)	231.17±8.27 _a A (100)	232.50±12.28 _a A (100)	213.13±21.24 _a A (100)
	T1	177.83±1.83 bB (98)	186.33±7.35 ьВ (91)	195.67±4.50 ьВ (90)	203.00±8.83 bB (87)	204.33±18.79 bB (87)	193.43±13.58 bB (90)
	т2	207.33±2.34 _a A (114)	193.33±1.51 _b AB (94)	194.67±1.97 ьВ (90)	199.17±12.41 ьВ (86)	192.50±8.83 ьВ (82)	197.40±8.54 bB (92)
水分利用效率 WUE [µmol/µmol]	CK	4.01±0.22aA (100)	3.72±0.14 bA (100)	3.64±0.18bB (100)	3.57±0.14bAB (100)	3.61±0.14 bB (100)	3.72±0.23 bAB (100)
	T1	3.90±0.10 bB (97)	3.66±0.27 bA (98)	3.49±0.07 cB (96)	3.41±0.02 ьв (95)	3.52±0.07 bB (97)	3.60±0.23 bB (97)
	т2	3.72±0.11 _{abB} (92)	3.96±0.02 aA (106)	3.88±0.02 aA (106)	3.80±0.19 _{aA} (106)	3.88±0.16 _a A (107)	3.85±0.14 _a A (104)
气孔限制值 <i>Ls</i>	СК	0.53±0.01 _a A (100)	0.47±0.04 ьв (100)	0.44±0.01 ьв (100)	0.41±0.01 ьв (100)	0.40±0.02 ьВ (100)	0.45±0.05 bB (100)
	Т1	0.55±0.01 _a A (103)	0.52±0.02 aA (110)	0.50±0.01 _a A (113)	0.48±0.02 aA (117)	0.48±0.04 aA (120)	0.51±0.03 _a A (112)
	T 2	0.47±0.01 bB (88)	0.51±0.01 _a AB (108)	0.50±0.01 _a A (113)	0.49±0.03 _a A (119)	0.51±0.02 _a A (127)	0.49±0.02 aA (110)

注:表内差异显著性水平"a、b、c"为 $P \le 0.05$, "A、B、C"为 $P \le 0.01$, 括号内为处理与对照的比值。

Note: Alphabet indicate significant differences between the treatments in table 1 "a, b, c" means $P \le 0.05$, "A,B,C" means $P \le 0.01$, Data in brackets mean the ratio of treatment to CK.

参考文献:

£ 111-

[1] Kerr JB; Meelroy & Ts Evidence for large up ward trends of Ultraviolet B radiation linked to ozone depletion [J] · Science, 1993,

262,1032-1034.

[2] 吴鲁阳,张振文,贺 猷.紫外线·B 辐射增强对葡萄植株形态的影响[J].干旱地区农业研究,2006,(4):87-89.

- [3] Kakani V G, Reddy K R, Zhao D, et al. Field crop responses to ultraviolet B radiation; a review [J]. Agricultural and Forest Meteorology, 2003, (120):191-218.
- [4] 李予霞,崔百明,董新平,等.水分胁迫下葡萄叶片脯氨酸和可溶性总糖积累与叶龄的关系[J].果树学报,2004,(2):170—172
- [5] Caldwell M M, Bjorn L O, Bornman S D, et al. Effects of increased solar U V radiation on terrestrial ecosystem[J]. Journal of Photochemistry and Photobiology, 1998, 46:40-52.
- [6] Cassi-LIT M, Whitecross M J, Nayudu M, et al. UV-B irradiation induces differential leaf damage, ultrastructural changes and accumulation of specific phenollic compounds in rice cultivars[J]. Plant Physiol, 1997, 24, 261—274.
- [7] Allen D J, McKee I F, Farage P K, et al. Analysis of the limitation to CO₂ assimilation on exposure of leaves of two Brassica na

- Pus cultivars to UV-B[J]. Plant Cell Environ, 1997, 20, 633—640.
- [8] Miller H E, Booker F L, Fiscus E L, et al. UV-B radiation and ozone effects on Growth yield and photosynthesis of soybean[J]. Environ Qual, 1994, 23(1):89-91.
- [9] He J. Huang L K. Chow W S. et al. Effects of supplementary ultraviolet B radiation on rice and pea plants [J]. Plant Physiol. 1993, 20, 129-142.
- [10] 贺军民, 佘小平, 刘 成, 等. 增强 UV-B 辐射和 NaCl 复合胁 迫下绿豆光合作用的气孔和非气孔限制[J]. 植物生理和分子 生物学学报, 2004, 30(1):53—58.
- [11] 师生波, 贲桂英, 赵新全, 等. 增强 UV-B 辐射对高山植物麻花 艽净光合速率的影响[J]. 植物生态学报, 2001, 25(5): 520— 524

Relationship between photosynthesis and leaf ages of grapevine under enhanced ultraviolet-B radiation

ZHOU Xin-ming¹, XI Zhu-mei¹, JIAO Xu-liang¹, ZHANG Zhen-wen¹, WU Lu-yang²
(1. College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China;
2. Shaanxi university of science and technology, Xi'an, Shaanxi 710000, China)

Abstract: Under natural sunlight conditions, the relationship between photosynthesis and leaf ages of grapevine (Cabernet Sauvignon) under enhanced ultraviolet—B radiation was studied. The results showed that: Under the treatments of enhanced lower UV-B radiation, the photosynthesis of grapevine obviously increased with leaf ages, and under the treatments of enhanced higher UV-B radiation, the grapevine photosynthesis decreased, but it was not significant compared to that of the control. It suggested that the grapevine have strong adaptability to UV-B radiation, and appropriate enhanced UV-B radiation could increase the photosynthesis of grapevine leaves.

Key words: Ultraviolet-B radiation; grapevine; leaf ages; photosynthesis