杨婷,魏晓妹,胡国杰,许义和.灰色BP神经网络模型在民勤盆地地下水埋深动态预测中的应用[J].干旱地区农业研究,2011,29(2):204~208
灰色BP神经网络模型在民勤盆地地下水埋深动态预测中的应用
Application of GM(1,1) and BP neural network coupled model in groundwater dynamic prediction of Mlinqin basin
  
DOI:10.7606/j.issn.1000-7601.2011.02.35
中文关键词:  GM(1,1)模型  灰色BP网络模型  地下水埋深预测  民勤盆地
英文关键词:GM(1,1) model  grey BP Neural network coupled model  prediction of groundwater depth  Minqin basin
基金项目:国家自然科学基金项目(50879071)
作者单位
杨婷 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100 
魏晓妹 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100 
胡国杰 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100 
许义和 西北农林科技大学水利与建筑工程学院,陕西 杨凌 712100 
摘要点击次数: 358
全文下载次数: 347
中文摘要:
      先建立等维新息GM(1,1)模型和BP神经网络模型相耦合的灰色BP神经网络组合模型,再以民勤盆地64、65和84号井为代表,运用此模型模拟和预报石羊河下游民勤盆地的地下水埋深动态。模型精度检验表明,64、65和84号井预测值的平均相对误差分别为0.45%,0.93%,0.62%,均小于1%,符合精度要求。相比GM(1,1)模型,组合模型预测的相对误差整体上较小;相比BP模型,64号井组合模型预测的1998~2001年地下水埋深平均绝对误差从0.32m减少为0.07m,精度显著提高。结果表明:组合模型综合考虑了地下水埋深序列的确定性和不确定性变化,具有更高的预测精度,适合于短期预报。
英文摘要:
      A coupled model of GM(1,1) and BP neural network is established and applied in groundwater dynamic simulation and prediction of Minqin basin using data of well 64, well 65 and well 84 as representatives. Accuracy test of this model indicates that the average relative errors of these three wells are 0.45%,0.93% and 0.62% respectively, which are all less than 1% and meet the accuracy requirements. Compared with GM(1,1),the predicted average rela-tive errors of this coupled model are all less than that of GM(1,1) model. And when compared with BP model, the aver-age absolute error of predicted groundwater depth of 1998~2001 reduced greatly from 0.32 m to 0.07 m. The results show that this coupled model considers the certainty and uncertainty of groundwater depth time series,with high accuracy of possessing prediction,and can be used for short term prediction.
查看全文  查看/发表评论  下载PDF阅读器