卢柳叶,李光录,张莉,张伐伐.基于TM影像的半干旱区土地利用信息提取——以山西省定襄县为例[J].干旱地区农业研究,2012,30(1):217~223
基于TM影像的半干旱区土地利用信息提取——以山西省定襄县为例
TM image-based land use information extraction in semi-arid region——A case study of Dingxiang County of Shanxi Province
  
DOI:10.7606/j.issn.1000-7601.2012.01.37
中文关键词:  SVM  NDVI  纹理特征  土地利用  PCA
英文关键词:SVM  NDVI  texture feature  land use  PCA
基金项目:中国科学院知识创新工程重大项目(KSCX-YW-09-07);中央高校基本科研业务费(QN2009040)
作者单位
卢柳叶 西北农林科技大学资源环境学院 陕西 杨凌 712100 
李光录 西北农林科技大学资源环境学院 陕西 杨凌 712100 
张莉 西北农林科技大学资源环境学院 陕西 杨凌 712100 
张伐伐 西北农林科技大学林学院 陕西 杨凌 712100 
摘要点击次数: 511
全文下载次数: 338
中文摘要:
      为了更准确提取半干旱区的土地利用信息,以山西省定襄县为研究区,利用Landsat TM影像,在主成分分析(PCA)的基础上,结合归一化植被指数(NDVI)和纹理信息,构建支持向量机(SVM)分类模型,提取研究区的土地利用信息。结果表明:与最大似然法和单纯依靠纹理特征SVM分类方法相比较,基于 NDVI和纹理特征的SVM分类法的分类精度有了显著提高,分类总精度达到了84.50%,Kappa系数为0.8113。研究表明,该方法对半干旱区的土地利用信息提取较为理想。
英文摘要:
      In order to extract land use information in semiarid region efficiently, Dingxiang Country of Shanxi Province is taken as the research area. Based on Landsat TM image and PCA, a comprehensive model of SVM integrated NDVI with texture features is adopted to classify regional land use information by using model maker of ENVI software. The result shows: contrasted with the classification based on the method of Maximum Likelihood and Texture Features-based SVM, the accuracy of omprehensive classification model of SVM integrated NDVI with texture features is significantly improved, and the overall classification accuracy is 84.50%, while Kappa coefficient reaches 0.8113, this work has e stablished a novel methodological framework for the extraction of land use information in semiarid region.
查看全文  查看/发表评论  下载PDF阅读器