王万鹏,马骊,孙柏林,郭秀娟,王世发,牛早霞,祁伟亮,蒲媛媛,路晓明,呼芳娣,许金苗,马学才,武军艳,李学才,方彦,孙万仓,刘丽君.DNA去甲基化参与提高白菜型冬油菜抗寒性的生理机制[J].干旱地区农业研究,2021,(5):29~39
DNA去甲基化参与提高白菜型冬油菜抗寒性的生理机制
Physiological mechanism of DNA demethylation in improving the cold resistance of Brassica rapa L.
  
DOI:10.7606/j.issn.1000-7601.2021.05.04
中文关键词:  白菜型冬油菜  抗寒性  育种选择  5-azaC  低温胁迫  DNA甲基化  生理机制
英文关键词:Brassica rapa L.  cold resistance  breeding selection  5-azaC  low temperature stress  DNA methylation  physiological mechanism
基金项目:国家自然科学基金(31960435; 31860388);国家现代农业产业技术体系项目(CARS-12);甘肃省现代农业产业技术体系项目(GARS-TSZ-1);国家重点研发计划科技部“油菜杂交优势利用技术与强优势杂交种创制” (2016YFD0101300)
作者单位
王万鹏 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
马骊 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
孙柏林 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
郭秀娟 Shanxi Academy of Agricultural Sciences Crop Research Institute of High and Cold Regions, Datong, Shanxi 037000, China 
王世发 Jilin Academy of Agricultural Sciences Economic Plant Development and Research Center, Changchun, Jilin 130124, China 
牛早霞 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
祁伟亮 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
蒲媛媛 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
路晓明 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
呼芳娣 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
许金苗 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
马学才 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
武军艳 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
李学才 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
方彦 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
孙万仓 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
刘丽君 College of AgronomyGansu Agricultural University, Rapeseed Engineering Research Center of Gansu Province, Key Laboratory of Arid Land Crop Science in Gansu Province, Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Lanzhou, Gansu 730070, China 
摘要点击次数: 213
全文下载次数: 156
中文摘要:
      利用来自不同育种环境的10份白菜型冬油菜材料,通过半致死温度的测定分析其抗寒性与环境的关系,并利用不同浓度DNA甲基化抑制剂5-azaC处理,分析DNA去甲基化对白菜型冬油菜DNA整体甲基化水平及低温胁迫下苗期生理特性的影响。结果表明,不同育种环境选育的材料,其半致死温度具有显著差异,其中材料2018-FJT、DT-7、DT-9与MXW-1的半致死温度分别为-16.04℃、-15.98℃、-15.63℃、-15.04℃;材料CT-2360、CT-2380、CT-2400、CT-2420、CT-2440、CT-2460的半致死温度分别为-11.32℃、-11.6℃、-11.42℃、-11.44℃、-12.97℃、-13.28℃。依据半致死温度,10个白菜型冬油菜抗寒性由强到弱依次为:2018-FJT>DT-7>DT-9>MXW-1>CT-2460>CT-2400>CT-2380>CT-2420>CT-2440>CT-2360。抗寒性的形成与育成环境的纬度和年平均气温呈极显著正相关。选择抗寒性及产地不同的4个材料CT-2360、MXW-1、2018-FJT、DT-7进行生理测定,结果表明,1 000 μmol·L-1 5-azaC处理能显著抑制幼苗的根生长,4个材料的根长较对照减少93.14%~95.06%;低温下5-azaC处理对抗寒性较弱材料CT-2360幼苗的相对电导率、丙二醛含量以及强抗寒性材料DT-7 幼苗的脯氨酸、可溶性蛋白含量影响最显著(P<0.05);低温处理过程中,4个材料的SOD、POD、CAT活性均上升,以低温处理5d最显著(P<0.05),其中2018-FJT的SOD活性增幅最高,为45.85%,DT-7的POD活性增幅最大,为460%,CT-2360的CAT活性增幅最显著, 为321.02%。HPLC分析发现常温下抗寒性较弱材料CT-2360的甲基化水平为77.48%,高于其他3个抗寒性强的材料;经过5-azaC处理后发生明显的去甲基化作用,证明抗寒能力受DNA去甲基化的调控。
英文摘要:
      Ten Brassica rapa materials from different breeding environments were used to analyze the relationship between cold resistance and environment by measuring semi\|lethal temperature. Treated with different concentrations of DNA methylation inhibitor 5-azaC, the effects of DNA demethylation on DNA methylation level and seedling physiological characteristics of Brassica rapa L. under low temperature stress were examined. The results showed that the semi\|lethal temperatures of materials selected in different breeding environments were significantly different, and the semi\|lethal temperatures of 2018-FJT, DT-7, DT-9, and MXW-1 were -16.04℃, -15.98℃, -15.63℃, and -15.04℃, respectively. The semi\|lethal temperatures of CT-2360, CT-2380, CT-2400, CT-2420, CT-2440, and CT-2460 were -11.32℃, -11.6℃, -11.42℃, -11.44℃, -12.97℃ and -13.28℃, respectively. According to the semi\|lethal temperature, the cold resistance of 10 Brassica rapa L. was in the following order: 2018-FJT>DT-7>DT-9>MXW-1>CT-2460>CT-2400>CT-2380>CT-2420>CT-2440>CT-2360. The formation of cold resistance was positively correlated with the latitude and annual average temperature of the breeding environment. Four materials CT-2360, MXW-1, 2018-FJT, and DT-7 with cold resistance and different producing areas were selected for physiological determination. The results showed that 1 000 μmol·L-1 5-azaC treatment could significantly inhibited the root growth of seedlings and the root length of the four materials decreased by 93.14% and 95.06% compared with the control. Under low temperature, 5-azaC treatment had the most significant effects on the REC and MDA content of CT-2360 seedlings, as well as the Pro and soluble protein content of strong cold resistant material DT-7. During the low temperature treatment, the SOD, POD, and CAT activities of the four materials all increased, and the low temperature treatment for 5 days was the most significant (P<0.05). Of which the SOD activity of 2018-FJT increased the most, which was 45.85%. The POD of DT-7 increased the most with 460%. The CAT of CT-2360 increased most significantly with 321.02%. HPLC analysis found that the methylation level of CT-2360 in materials with weak cold resistance at room temperature was 77.48%, which was higher than that of the other three materials with strong cold resistance. Significant demethylation occurred after 5-azaC treatment. This study supports that the cold resistance is regulated by DNA demethylation.
查看全文  查看/发表评论  下载PDF阅读器