殷小东,齐鹏,焦亚鹏,王晓娇,张燕江,薛江龙,李华强.氮添加对黄土高原春小麦耕层土壤磷组分及植株磷分布的影响[J].干旱地区农业研究,2024,(2):71~79
氮添加对黄土高原春小麦耕层土壤磷组分及植株磷分布的影响
Effects of nitrogen addition on soil phosphorus components and plant phosphorus distribution in topsoil of spring wheat in the Loess Plateau
  
DOI:10.7606/j.issn.1000-7601.2024.02.09
中文关键词:  施氮  春小麦  耕层土壤磷组分  植株磷分布  黄绵土
英文关键词:nitrogen application  spring wheat  top soil phosphorus components  plant phosphorus distribution  yellow loam soil
基金项目:甘肃省高校创新基金项目(2020B-135);甘肃农业大学青年导师扶持基金项目(GAU-QDFC-2021-20);甘肃省自然科学基金(21JR7RA830)
作者单位
殷小东 甘肃农业大学资源与环境学院甘肃 兰州 730070甘肃省干旱生境作物学国家重点实验室甘肃 兰州 730070 
齐鹏 甘肃农业大学资源与环境学院甘肃 兰州 730070甘肃省干旱生境作物学国家重点实验室甘肃 兰州 730070甘肃省节水农业工程技术研究中心甘肃 兰州 730070甘肃省畜禽废弃物资源化利用工程研究中心甘肃 兰州 730070 
焦亚鹏 甘肃农业大学资源与环境学院甘肃 兰州 730070 
王晓娇 甘肃农业大学管理学院甘肃 兰州 730070 
张燕江 甘肃农业大学资源与环境学院甘肃 兰州 730070 
薛江龙 甘肃农业大学资源与环境学院甘肃 兰州 730070 
李华强 甘肃农业大学资源与环境学院甘肃 兰州 730070 
摘要点击次数: 293
全文下载次数: 233
中文摘要:
      以旱作农田春小麦为研究对象,设置4个氮添加梯度,分别为0(CK)、75、115、190 kg·hm-2,利用顾益初-蒋柏藩法和Bowman-Cole法于2019年和2020年连续测定收获后0~20 cm耕层土壤的无机磷组分和有机磷组分,综合分析氮添加对土壤磷组分、植株器官磷含量的影响和驱动土壤磷转化的关键因素。结果表明:氮添加增大了土壤无机磷占全磷的比例,2019年增幅为1.02%~4.93%、2020年增幅为1.31%~4.92%;同时也降低了土壤有机磷占全磷的比例,降幅分别为0.74%~4.92%(2019年)和2.50%~4.92%(2020年)。与对照处理相比,N115处理显著(P<0.05)降低了缓效和难以吸收利用的磷源,其中在2019年和2020年无机磷组分Ca8-P分别降低了8.55%和19.53%,Al-P分别降低了9.26%和12.88%,Fe-P分别降低了10.34%和39.21%,Ca10-P分别降低了2.87%和16.27%;有机磷组分MROP分别降低了18.18%和16.53%,MLOP分别降低了23.29%和14.59%。氮添加导致土壤有机碳显著提高了2.85%~5.54%(2019年)和8.54%~15.35%(2020年),但土壤pH值显著降低了0.47%~0.83%和1.85%~2.42%。随着施氮量增加,籽粒产量、地上部生物量均呈先升高后降低趋势,变化范围分别为1 890.26~1 961.91、1 886.19~2 263.42 kg·hm-2(2019年),4 726.41~5 905.79、5 283.62~5 755.19 kg·hm-2(2020年),均在N0处理最小,N115处理最大。相关性分析结果表明有效磷与无机磷Ca2-P呈极显著正相关(P<0.01),与有机磷MLOP呈显著正相关(P<0.05),与无机磷O-P呈显著负相关(P<0.05)。因此,氮添加可能通过增加碱性磷酸酶和微生物量碳、氮、磷的有效性,降低土壤中缓效和难以吸收利用的磷源—无机磷Al-P、Fe-P、Ca8-P、Ca10-P的含量,促进有机磷MLOP、MROP的矿化,进而促进黄土高原春小麦耕层土壤有效磷的转化。
英文摘要:
      Taking spring wheat in dry farmland as the research object, four nitrogen addition gradients of 0 (control), 75, 115, 190 kg·hm-2 were set up in spring wheat of dry farmland. The inorganic phosphorus and organophosphate components in 0~20 cm topsoil were determined by Gu Yichu-Jiang Baifan method and Bowman-Cole method for two consecutive years. The effects of nitrogen addition on soil phosphorus content and plant organ phosphorus content and the key factors driving soil phosphorus transformation were analyzed. Nitrogen addition for two consecutive years (2019-2020) increased the biological availability of soil phosphorus, increased the proportion of soil inorganic phosphorus to total phosphorus 1.02%~4.93% in 2019, 1.31%~4.92% in 2020, and decreased the proportion of soil organic phosphorus to total phosphorus: 0.74%~4.92% (in 2019), 2.50%~4.92% (in 2020), compared with the control treatment. The N115 treatment significantly (P<0.05) reduced the slow and difficult to absorb and utilize phosphorus sources, among them, inorganic phosphorus components in 2019 and 2020 were Ca8-P (8.55%, 19.53%), Al-P (9.26%,12.88%), Fe-P (10.34%,39.21%), Ca10-P (2.87%,16.27%). The contents of MROP in 2019 and 2020 (18.18%,16.53%) and MLOP (23.29%,14.59%) were significantly reduced. Nitrogen addition significantly increased soil organic carbon by 2.85% to 5.54% in 2019 and 8.54% to 15.35% in 2020, but significantly decreased soil pH by 0.47% to 0.83% and 1.85% to 2.42%. With the increase of nitrogen application, grain yield and aboveground biomass increased first and then decreased,the range was 1 890.26~1 961.91, 1 886.19~2 263.42 kg·hm-2(2019), 4 726.41~5 905.79, 5 283.62~5 755.19 kg·hm-2(2020), which were the smallest in N0 treatment and the largest in N115 treatment. The available phosphorus was positively correlated with inorganic phosphorus Ca2-P (P<0.01), positively correlated with organophosphorus MLOP (P<0.05), and negatively correlated with inorganic phosphorus O-P (P<0.05). The application of nitrogen fertilizer for two consecutive years in the topsoil of spring wheat in the Loess Plateau might mainly through increasing the effectiveness of alkaline phosphatase and microbial biomass carbon, nitrogen, and phosphorus, thereby reducing the slow and difficulty level to absorb and utilize phosphorus sources in the soil: inorganic phosphorus Al-P, Fe-P, Ca8-P and Ca10-P, promoting the mineralization of organophosphorus MLOP and MROP, and then improving conversion of soil available phosphorus.
查看全文  查看/发表评论  下载PDF阅读器