梅轩铭,胡耀华,张浩天,蔡雨卿,罗凯天,孟玉玲,宋银,单卫星.基于高光谱成像技术判别马铃薯叶片干旱状态[J].干旱地区农业研究,2024,(5):246~254
基于高光谱成像技术判别马铃薯叶片干旱状态
Evaluation of drought status of potato leaves based on hyperspectral imaging
  
DOI:10.7606/j.issn.1000-7601.2024.05.25
中文关键词:  马铃薯  干旱状态判别  高光谱成像  特征波长  模型构建
英文关键词:potato  drought stress identification  hyperspectral imaging  characteristic wavelengths  model construction
基金项目:中国科学院战略性先导科技专项(XDA23070201);杨凌种业创新中心重点研发项目(Ylzy-mls-02)
作者单位
梅轩铭 西北农林科技大学农学院陕西 杨凌 712100 
胡耀华 浙江农林大学光机电工程学院浙江 临安 311300 
张浩天 西北农林科技大学农学院陕西 杨凌 712100 
蔡雨卿 西北农林科技大学农学院陕西 杨凌 712100 
罗凯天 西北农林科技大学农学院陕西 杨凌 712100 
孟玉玲 西北农林科技大学农学院陕西 杨凌 712100 
宋银 西北农林科技大学农学院陕西 杨凌 712100 
单卫星 西北农林科技大学农学院陕西 杨凌 712100 
摘要点击次数: 16
全文下载次数: 14
中文摘要:
      为了准确快速地分级评估马铃薯叶片干旱状态,提出了基于高光谱成像技术的马铃薯叶片干旱状态分类方法。于2022年以青薯9号原原种为材料,通过使用高光谱成像仪获取3种不同干旱状态的马铃薯叶片,提取各类样本光谱反射率信息420个,讨论了4种光谱数据预处理方式对建模的影响。使用基于随机森林的交叉验证递归特征消除算法(RF-RFECV)与竞争性自适应重加权抽样法(CARS)进行特征波长选择,结合极端随机树(extremely randomized trees,EXT)构建了马铃薯叶片干旱状态的分类模型。结果表明,本研究构建的3个干旱状态分类模型,其测试集模型精度均高于85%,其中SNV-RF-RFECV-EXT模型表现最佳,测试集预测准确率达92.14%。同时,为直观地显示马铃薯叶片的干旱状态,选用建立的SNV-RF-RFECV-EXT模型对叶片进行干旱程度可视化,通过不同颜色直观显示叶片干旱状态,为马铃薯叶片干旱状态的判别提供了新方法。
英文摘要:
      To evaluate the drought status of potato leaves accurately and quickly, a hyperspectral imaging method was employed to assess the drought status of potato leaves. In 2022, the original Qingshu No. 9 seed was used as the test material. Three types of drought status were obtained using hyperspectral imaging. A total of 420 spectral reflectance measurements from various samples were extracted and the influence of four spectral data preprocessing methods on modeling was discussed. A classification model for the drought status of potato leaves was constructed using the random forest cross\|validation recursive feature elimination algorithm (RF-RFECV) and the feature wavelength selection method of competitive adaptive reweighted sampling (CARS) methods combined with extremely randomized trees (EXT). The results showed that the three drought status classification models constructed in this study had accuracy higher than 85% in the test set, among which the SNV-RF-RFECV-EXT model performed the best with a prediction accuracy of 92.14% in the test set. To visually assess the drought status of potato leaves, the SNV-RF-RFECV-EXT model was applied to depict the degree of drought. Different colors were used to represent varying levels of drought, offering a novel approach for distinguishing the drought conditions of potato leaves.
查看全文  查看/发表评论  下载PDF阅读器