任志文,曹红霞,胡清阳,祁辰,李志军.盐分淋洗下盐碱地棉田生育时期水氮耦合方案研究[J].干旱地区农业研究,2025,(3):60~70
盐分淋洗下盐碱地棉田生育时期水氮耦合方案研究
Water\|nitrogen coupling dynamics under salt leaching during growth stages in saline\|alkali cotton fields
  
DOI:10.7606/j.issn.1000-7601.2025.03.07
中文关键词:  棉花  盐分淋洗  水氮耦合  灌水量  氮素农学利用率
英文关键词:cotton  salt leaching  water\|nitrogen coupling  irrigation amount  nitrogen agronomic efficiency
基金项目:国家自然科学基金(52179047);国家重点研发计划项目(2022YFD1900401)
作者单位
任志文 西北农林科技大学旱区农业水土工程教育部重点实验室陕西 杨凌 712100 
曹红霞 西北农林科技大学旱区农业水土工程教育部重点实验室陕西 杨凌 712100 
胡清阳 西北农林科技大学旱区农业水土工程教育部重点实验室陕西 杨凌 712100 
祁辰 西北农林科技大学旱区农业水土工程教育部重点实验室陕西 杨凌 712100 
李志军 西北农林科技大学旱区农业水土工程教育部重点实验室陕西 杨凌 712100 
摘要点击次数: 74
全文下载次数: 34
中文摘要:
      为改善盐碱棉田土壤水盐环境、提高籽棉产量和水氮利用效率,于2023年开展不同灌水量和施氮量的棉花生育时期淋洗试验。设置3个灌水水平(W1:1.0 ETc,W2:1.25 ETc,W3:1.5 ETc)和4个施肥量(N1:0 kg·hm-2,N2:100 kg·hm-2,N3:200 kg·hm-2,N4:300 kg·hm-2)进行完全组合试验。结果表明:提高灌水淋洗量虽然可降低膜内土壤含盐量,但会增加膜间土壤含盐量;高水高肥(W3N4处理)使得棉花冗余生长、贪青晚熟,增加了叶片和棉铃间的营养竞争,降低了籽棉产量。适当的淋洗施肥(W2N4处理)能够降低棉花根区含盐量,通过增加蕾期与花期的叶面积指数和有效铃数,提高了干物质的积累和籽棉产量。此外,建立了灌水量和施氮量与籽棉产量和氮素农学利用率的二元二次回归模型;通过单因素分析发现,籽棉产量随灌水量的增加先增加后降低,随施氮量的增加而增加;氮素农学利用率随灌水量和施氮量的增加先增加后降低。通过两因素交互分析发现,随灌水量和施氮量的增加,籽棉产量和氮素农学利用率均呈先增加后减小趋势。灌水量和施氮量存在耦合效应,且灌水的影响效应大于施氮。基于回归模型对籽棉产量和氮素农学利用率进行方案优化,推荐灌溉水平为1.14~1.30 ETc、施氮量为171~228 kg·hm-2的灌水施肥控盐方案。
英文摘要:
      To improve the soil water and salt conditions in saline\|alkali cotton fields, as well as to increase seed cotton yield and enhance water and nitrogen utilization efficiency, a cotton leaching experiment with varying irrigation and nitrogen application rates was conducted in 2023. A complete factorial design was used, consisting of three irrigation levels (W1: 1.0 ETc, W2: 1.25 ETc, W3: 1.5 ETc) and four nitrogen application rates (N1: 0 kg·hm-2, N2: 100 kg·hm-2, N3: 200 kg·hm-2, N4: 300 kg·hm-2). The findings indicated that an increase in irrigation flushing rate lowered soil salt content within the rows while raising it between them. The combination of high water and high nitrogen (W3N4 treatment) led to excessive vegetative growth and delayed maturity of cotton plants, intensifying nutrient competition between leaves and bolls which ultimately reduced seed cotton yield. Conversely, optimal flushing fertilization (W2N4 treatment) effectively decreased soil salt concentration in the root zone while enhancing leaf area index and effective boll number during both boll initiation and blooming phases, which resulted in increased dry matter accumulation as well as seed cotton yield. Furthermore, a bivariate quadratic regression model was developed to analyze the relationship between irrigation volume, nitrogen application rate, seed cotton yield, and nitrogen agronomic utilization efficiency. Single\|factor analysis revealed that seed cotton yield initially increased before declining with rising irrigation volume but consistently increased alongside higher nitrogen application rates. Similarly, the nitrogen agronomic utilization efficiency exhibited an initial increase followed by a decrease as both irrigation volume and nitrogen application rate escalated. Two\|factor interaction analysis demonstrated that both seed cotton yield and nitrogen agronomic utilization efficiency first rose then fell with increases in these variables’ levels; notably, the effect of irrigation volume on these outcomes surpassed that of nitrogen application rate. Based on the insights from this regression model, an optimal strategy for managing salt levels while maximizing seed cotton yield through appropriate irrigation practices is proposed. The model was used to optimize irrigation, fertilization, and salt control strategies for seed cotton yield and nitrogen agronomic efficiency. The recommended irrigation level ranges from 1.14 to 1.30 ETc, with a nitrogen application rate of 171 to 228 kg·hm-2.
查看全文  查看/发表评论  下载PDF阅读器